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What is a good forecast?
Attributes of

quality:
Good forecasts have: = Association
* QUALITY = Accuracy
e VALUE/UTILITY = Discrimination
+ CONSISTENCY 4. " Reliability

Bl > No single score can
be used to summarize

A. H. Murphy 1993
“What is a good forecast ?

An essay on the nature of goodness in weather forecasting”
Weather and Forecasting, 8, 281-293.



Some definitions

* Quality: Measure of correspondence between
forecasts and observations using mathematical
relationship (deterministic and probabilistic scores)

e Value: Measure of benefit achieved (or loss
incurred) through the use of forecasts

* Consistency: Correspondence between a forecast
and the forecasters belief. If consistent, the forecast
must communicate what the forecaster thinks will
happen, and correctly indicate the associated level
of uncertainty



S2S forecast quality assessment

1. Attributes of deterministic
forecasts (ensemble mean)



Association

* Overall strength of the relationship between the
forecasts and observations

* Linear association is often measured using the
product moment correlation coefficient
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x: forecast y: observation
n: number of (x,y) pairs
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Relationship between past forecast and past obs. anomalies
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Relationship between past forecast and past obs. anomalies
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Accuracy

* Average distance between forecasts and
observations

e Simplest measure is the Mean Error (Bias)

'ME :li(xi ] yl-)

n =1

x: forecast y: observation n: number of (x,y) pairs



Seasonal forecast example:
1-month lead precip. fcsts for DJF

Carralatian batwasan foracast and oba. anomaly
CPTEC: Precipitation (1979-2001) — Data: GPCP Vv 2.1
lasuad: Nov valid for DJF
Region: Glabal
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Monthly forecast example:
0-day lead precip. fcsts for next 30 days

ACC (against GPCP v2 monthly) Bias (against GPCP v2 monthly)
Day 1-30 mean Day 1-30 mean
|.C. : Dec.-Feb. 1981-2010 I.C. : Dec.-Feb. 1981-2010
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Precipitation

Monthly forecast example:
0, 5, 10 and 15-day lead fcsts for Feb
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Two weeks forecast example:
%2 month lead precip. fcsts

Correlation between forecast and observed precipitation anomalies
Fortnight 2: Sep, Oct, Nov forecast start months. Hindcasts: 1980-2006
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S2S forecast quality assessment

2. Attributes of probabilistic
forecasts (derived from
ensemble members)



Discrimination

Conditioning of forecasts on observed outcomes

Addresses the question: Does the forecast differ
given different observed outcomes? Or, can the
forecasts distinguish an event from a non-event?

If the forecast is the same regardless of the
outcome, the forecasts cannot discriminate an
event from a non-event

Forecasts with no discrimination ability are
useless because the forecasts are the same
regardless of what happens



ROC Curve
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False Alarm Rate
 The ROC curve is constructed by calculating the hit and
for various probability thresholds
* Area under ROC curve (A) is a measure of discriminatior
successfully discriminating a warm (SST>0) from a cold (
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Seasonal forecast example:
1-manth lead precip. fcsts for DJF

ROC Skill Score. Evant: Magativea au aanl:ru-a anomaly

CPTEC: Precipitation (19?9 2ﬂ-ﬂ1] — Data: GPCP Vv 2.1
lasuad: How Valid for DJF
Reagion: Glabal

ROC Skill Score=2A-1



Initial : DJF , Lead time :

Hit Rate (%)

Rate (%)
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Monthly forecast example:
1-day lead 2mT fcsts for day 2-29 mean

Relative Operating Characteristics
Event : T2m Anomaly Upper Tercile 2—=29 day mean (V1403 vs JRAS5)

for 30 years {1981-2010), mam:5
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One to two weeks forecast example:
Northern extratropics

ROC score: 2-metre temperature in the upper tercile

Monthly Forecast — Monthly Forecast
Persistence of day 5-11 - Persistence of day 5-18
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Two weeks forecast example:
%2 month lead precip. fcsts

ROC area: Precipitation anomalies in the upper tercile
Fortnight 2: Sep, Oct, Nov forecast start months. Hindcasts: 1980-2006
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Reliability and resolution

Reliability: correspondence between forecast
probabilities and observed relative frequency
(e.g. an event must occur on 30% of the
occasions that the 30% forecast probability
was issued)

Resolution: Conditioning of observed outcome
on the forecasts

Addresses the question: Does the frequency
of occurrence of an event differs as the
forecast probability changes?

If the event occurs with the same relative
frequency regardless of the forecast, the
forecasts are said to have no resolution

Forecasts with no resolution are useless
because the outcome is the same regardless
of what is forecast



Reliability diagram
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Reliability diagram
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Seasonal forecast example:

1-month lead MSLP fcsts for DJF
GLOSEAS Hindcast Probabilistic skill

MSLP in N. Atlantic in upper and lower tercile
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Monthly forecast example:
2-day lead 2mT fcsts for day 2-29 mean

< Reliability Diagram >

Event : T2m Anomaly Upper Tercile 2=29 day mean (V1403 vs JRASS)

BSS, Brel,Bres for 30 ysars (1981—2010) mem:5
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Two weeks forecast example:
2 month lead precip. fcsts

Precipitation anomalies in the upper tercile
Fortnight 2: Sep, Oct, Nov forecast start months. Hindcasts: 1980-2006
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Seamless verification

Seamless forecasts -  consistent across space/time scales
single modelling system or blended
probabilistic / ensemble

obal sub- seasonal decadal climate
) gioba seasonal prediction prediction change
S NWP pre@fﬂion p 1
% :
= regional Vel
= short
S range
0p) local Ebert, E., L. Wilson, A. Weigel, M. Mittermaier, P. Nurmi,

nowcasts P. Gill, M. Gober, S. Joslyn, B. Brown, T. Fowler, and A.
, Watkins, 2013: Progress and challenges in forecast
_ verification. Meteorol. Appl., 20, 130-139.
point >
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Final remarks

* Clear need for attributes-based verification for a complete
forecast quality view

* Need for use more than a single score for more detailed
forecast quality assessment

* S2S verification is naturally leaning towards the seamless
consistency concept addressing the question of which scales
and phenomena are predictable

* As S2S covers various forecast ranges (days, weeks and
months) it naturally allows seamless verification developments



Thank you all for your attention!
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