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Types of forecasts, observations

Continuous
— Ex: Temperature, Rainfall amount, Humidity, Wind speed

Categorical
— Dichotomous (e.g., Rain vs. no rain, freezing or no freezing)
— Multi-category (e.g., Cloud amount, precipitation type)

— May result from subsetting continuous variables into categories
* Ex: Temperature categories of 0-10, 11-20, 21-30, etc.

Categorical approaches are often used when we want to truly
“verify” something: i.e., was the forecast right or wrong?

Continuous approaches are often used when we want to
know “how” they were wrong



Exploratory methods:
joint distribution

Scatter-plot: plot of PRAHA TEMPERATURE
i scatter-plot

observation versus forecast
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Questions:

Scatter-plot: How will the scatter Scatter-plot: How would you

plot and regression line change interpret a horizontal regression
for longer forecasts? line?
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Density

Exploratory methods:
marginal distribution

Quantile-quantile plots:

OBS quantile versus the
corresponding FCST quantile

Perfect: FCST=0BS, points
should be on the 45° diagonal

theoretical example: N{(20,5.5), 75% quantile
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OBSERVATION
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Scatter-plot and gg-plot: example 1
Q: is there any bias? Positive (over-forecast) or
negative (under-forecast)?
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scatter-plot
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OBSERVATION
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Scatter-plot and gg-plot: example 2

Describe the peculiar behaviour of low temperatures
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Scatter-plot: example 3
Describe how the error varies as the
temperatures grow

OBSERVATION

KAHIRA TEMPERATURE
scatter-plot

LAS-PALMAS TEMPERATURE
scatter-plot
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OBSERVATION

Scatter-plot: example 4

Quantify the error

LAS-PALMAS TEMPERATURE
scatter-plot
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FORECAST

Q: how many
forecasts exhibit an
error larger than 10
degrees ?

Q: How many
forecasts exhibit an
error larger than 5
degrees ?

Q: Is the forecast
error due mainly to
an under-forecast or
an over-forecast ?



OBSERVATION

Scatter-plot and
Contingency Table

Does the forecast detect correctly Does the forecast detect correctly
temperatures above 18 degrees ? temperatures below 10 degrees ?
PRAHA TEMPERATURE PRAHA TEMPERATURE
scatter-plot, T > 18 scatter-plot, T < 10
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Scatter-plot and Cont. Table: example 5
Analysis of the extreme behavior

Q: How does the forecast handle
the temperatures above 10

g Mij;sed warm events P 4 | degrees 7 .
104 e satetd « How many misses ?
| . oloe 37 « How many False Alarms ?
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01 oo 1013 e333e3 3335450 so o forecast of temperatures larger
2 slarms || o es8s8sscHse ses. | o than 10 degrees ?
.% 5 1 .0 .“¢00§ ¢ — :
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O [owt *oles ostpmisitiisees| s=ms | the temperatures below -20
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P 7 0 P - * How many misses ?
o| /to. @ » Are there more missed cold
28 Ao Missedcoldevents —— events or false alarms cold
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VB @R B 8 B * How does the forecast minimum
A temperature compare with the

observed minimum temperature ?




Exploratory methods:
marginal distributions

Visual comparison:
Histograms, box-plots, ...

Summary statistics:
e Location: OBS -

mean :Yzlzxi
N ‘=1

median =q,; FCST 4 % ............................. {
* Spread. 10 15 20 25 30
HVAR TEMPERATURE
L —\2
st dev = EZ(xi_x)
Nt MEAN | MEDIAN | STDEV IQR

Inter Quartile Range = OBS | 20.71 | 2025 | 5.18 | 852

IQR =075 — g5

FCST 18.62 17.00 5.99 9.75




Density

Exploratory methods:
conditional distributions

Temperatures 2003-2007 Scandinavia
scatter-plot

Conditional histogram and

conditional box-plot
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Temperature Distribution

for observed temperatures -3 and -7

F .
16 Y Q: Look at the figure: What can
you say about the forecast
N B system?

—> cannot discriminate

D [ FEERY 1 given an observed temperature of -3
| deg C and -7 deg C. 11 Atlantic

2 o e NN | region stations for the period 1/86 to
I |§ r h 3/86. Sample size 701 cases.
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Temperature (C) Stanski et al., 1989
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Exploratory methods:
conditional distributions

cannot discriminate can discriminate
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Scores for continuous forecasts: linear bias

Bias = Mean Error = ME :%Zn:( f,—x)=f-X
=1

f = forecast; x = observation

« Measures the average of the errors = difference
between the forecast and observed means

 Indicates the average direction of error: positive bias
indicates over-forecast, negative bias indicates under-
forecast (= bias correction)

« Does notindicate the magnitude of the error (positive
and negative error can — and hopefully do — cancel out)




Monthly mean bias of MSLP field (LM-VERA) in hPa over eastern Alps
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Scores for continuous forecasts: Mean Absolute Error
(MAE)

MAE =23 f, —x|
ns

 Average of the magnitude of the errors

 Linear score = each error has same weight

It does notindicates the direction of the error, justthe
magnitude




Continuous scores: MSE

19 2 Attribute:
Mean Squared Error (MSE) = ﬁ;( fi — X ) measures
accuracy

Average of the squares of the errors: it measures
the magnitude of the error, weighted on the
squares of the errors

it does not indicate the direction of the error

Quadratic rule, therefore large weight on large errors:
- good if you wish to penalize large error

- sensitive to large érrors (e.g. precipitation) and outliers;
sensitive to large variance (high resolution models);
encourage conservative forecasts (e.g. climatology)



Continuous scores: RMSE

RMSE =+ MSE

Attribute:
measures
accuracy

RMSE is the squared root of the MSE: measures the

magnitude of the error retaining the variable unit (e.g. °C)

Similar properties of MSE: it does not indicate the direction
the error; it is defined with a quadratic rule = sensitive to

large values, etc.
NOTE: RMSE is always larger or equal than the MAE

Q: if I verify two sets of data and in one I find RMSE > MAE,
in the other I find RMSE = MAE, which set is more likely to

have large outliers ? Which set has larger variance ?




Continuous scores: linear correlation

_ n ) (yi - y)(xi - i) __cov(Y,X) Attribute:
Moy = 1 R P measures
\/nZ(yi —7) 'HZ(Xi —Y) " association

i=1 i=1

Measures linear association between forecast and observation
Y and X rescaled (non-dimensional) covariance: ranges in [-1,1]
It is not sensitive to the bias

The correlation coefficient alone does not provide information on the
inclination of the regression line (it says only is it is positively or
negatively tilted); observation and forecast variances are needed; the
slope coefficient of the regression line is given by b = (5,/5,)ry,

Not robust = better if data are normally distributed
Not resistant = sensitive to large values and outliers



Correlation coefficient

= st i —— e




Correlation coefficient

b 5




Correlation coefficient

What is wrong with the

correlation coefficient 0.0 _04 0.8 ~1.0
as a measure of ' Doesn’t take into \"\
performance? account biases and )

1.0 1.0 1.0 amplitude — can inflate -1.0

V4 performance estimate Y
0.0 0_;3?1% O;,_f More appropriate as a
“"5% | %ﬁﬁ% measure of “potential”
N performance




Decomposition of the MSE
f=f+f
0=0"+0
=0
0'=0
MSE = (f —o)’
MSE = £ 7 +0 +(f —of —270’

- Reynold‘s Averaging

/N

MSE = o? + o’ +bias® — 2*cov( f,0)

2

0
MSE = o +G§ + bias? —2*g o,cor(f,0) Bias can be subtracted !
BC_(R)MSE

Consequence: smooth forecasts verify better

MSE =min

OMSE ' ‘0
0o,

O-f _MSE_optimal = O'OCOF( f !O)




Taylor Diagramm

Combines BC_RMSE, variance and correlation
coefficient in a graphical way

BC _ RMSE? =%Z (X=X )-(x°-x°)f
BC RMSE®=0¢+0’-20.0,r

Ir_c:ov(Xf,X")

f
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) 2 2 2
Law of cosines: C =a"+b"—2ab cosg¢
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Comparative verification

Skill scores

— A skill score is a measure of relative performance

* Ex: How much more accurate are my temperature
predictions than climatology? How much more accurate
are they than the model’s temperature predictions?

* Provides a comparison to a standard

— Standard of comparison (=reference) can be
* Chance (easy?)
* Long-term climatology (more difficult)
* Sample climatology (difficult)
» Competitor model / forecast (most difficult)
 Persistence (hard or easy)



Comparative verification

— Generic skill score definition:
SS — M — Ivlref

M o |\/Iref

Where M is the verification measure for the forecasts, Mt is
the measure for the reference forecasts, and M+ is the
measure for perfect forecasts (=0)

— Measures percent improvement of the forecast over
the reference

— Positively oriented (larger is better)

— Choice of the standard matters (a lot!) = have in
mind when comparing skill scores

— Perfect score: 1
— How far | am on the way to the perfect forecast?

perf



Continuous skill scores:
MSE skill score

MSE — MSE MSE Attribute:
SS — ref —1_
" I\/ISEperf _ I\/ISEref I\/ISEref measiﬁﬁ

Same definition and properties as the MAE skill score: measure accuracy with
respect to reference forecast, positive values = skill; negative values = no skill

Sensitive to sample size (for stability) and sample climatology (e.g. extremes):
needs large samples

Reduction of Variance: MSE skill score with respect to climatology.
If sample climatology is considered:

linear correlation bias
~ 2 _{>_ 2
Y=X; MSE,=s? and RV=1-"oc—p2 —(rXY —i] —(Y - X)
Sx Sx Sx
=i=

reliability: regression line slope coeff b=(Sy/Sy)rvy




Accuracy vs skill

24h mean wind forecast
.+ Higher skill

*
“

100
T+ 90 ¥
T80 &
2 T 60 g
f =40
= 1303
1o 2
0 - h.: 0 Sf)

1 23 456 7 8 9 101112"
observed wind anomalyin m/s ‘Lower accuracy

-> High skill because getting reference worse.



Continuous scores:
anomaly correlation

V =y —¢ Forecast and observation anomalies to evaluate
m m.m forecast quality not accounting for correct forecast
le =X -C_ of climatology (e.g. driven by topography)
Centred and uncentred AC for
R NN weather variables defined over
Z (ym_y)(xm_x) a spatial domain: c,, is the
AC_ . = memap climatology at the grid-point m,
o 1)\2 L o1)\2 over-bar denotes averaging over
\/Z(ym‘y) D, (X=X the field
memap memap
Z (ym_cm)(xm_cm) Z (ym)<xm)
AC — memap — memap

jz (Y=6) ¥ (%=, Jz (V) Y (x,)

memap memap



Continuous scores:
anomaly correlation

Day 7 NHem — [ay 3 NHem
500hPa geopotential height Day 7 SHem ——— Day 3 SHem
Ancomaly correlation Day 10NHEM e Day 5 NHem
12-month running mean Day 10SHem  ——— Day 5 SHem

{cantarad an the middia of tha window)
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Linear Error in Probability Space

LEPS =3i\|:x(
N 5=

« LEPS is an MAE evaluated
by using the cumulative
frequencies of the
observation

* Errors in the tail of the
distribution are penalized
less than errors in the
centre of the distribution

« More robust (equitable)
version developed by Potts
(1996)

f)—Fe (%)

theoretical example: N(20,5.5) cumulative probability
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Summary

* Graphical representations of distributions provide
a great deal of information about performance
— Use initially to characterize forecasts and observations
— Can also be used to depict performance and
comparative performance

e Joint, marginal, and conditional distributions
provide different kinds of information

— Summary scores and measures also provide different
kinds of information



Summary cont.

 Many summary scores exist for each type of
distribution
— Each provides different kinds of information

* High dimensionality of the continuous forecast

verification problem requires use of a variety of
measures
* Selection of a particular standard of comparison will
have a big impact on skill
— Easy standard of comparison => Highest skill
— Difficult standard of comparison => Lowest skill
— Best to choose a meaningful standard




Summary cont.

 From a practical perspective:
— Correlation provides limited information on its own

— RMSE and bias are not independent

* More meaningful to present bias-corrected RMSE along with
Bias

* When planning verification give careful
consideration to
— Sampling (independent samples; meaningful subsets)
— Statistical characteristics of forecasts and obs

— Performance attributes to measure to answer questions
of interest




Thank you!
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