

Basic Verification Concepts

Barbara Brown National Center for Atmospheric Research Boulder Colorado USA

bgb@ucar.edu

May 2017 Berlin, Germany

Basic concepts - outline

- What is verification?
- Why verify?
- Identifying verification goals
- Forecast "goodness"
- Designing a verification study
- Types of forecasts and observations
- Matching forecasts and observations
- Statistical basis for verification
- Comparison and inference
- Verification attributes
- Miscellaneous issues
- Questions to ponder: Who? What? When? Where? Which? Why?

SOME BASIC IDEAS

What is verification?

Verify: **ver·i·fy**

Pronunciation: 'ver-&-"fI
1 : to confirm or substantiate in law by oath
2 : to establish the truth, accuracy, or reality of <verify the claim>
synonym see CONFIRM

- Verification is the process of comparing forecasts to relevant observations
 - Verification is one aspect of measuring forecast *goodness*
- Verification measures the *quality* of forecasts (as opposed to their *value*)
- For many purposes a more appropriate term is "evaluation"

- Purposes of verification (traditional definition)
 - Administrative
 - Scientific
 - Economic

- Administrative purpose
 - Monitoring performance
 - Choice of model or model configuration (has the model improved?)
- Scientific purpose
 - Identifying and correcting model flaws
 - Forecast improvement
- Economic purpose
 - Improved decision making
 - "Feeding" decision models or decision support systems

 What are some other reasons to verify hydrometeorological forecasts?

- What are some other reasons to verify hydrometeorological forecasts?
 - Help operational forecasters understand model biases and select models for use in different conditions
 - Help "users" interpret forecasts (e.g., "What does a temperature forecast of 0 degrees really mean?")
 - Identify forecast weaknesses, strengths, differences

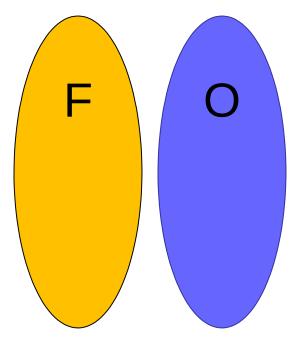
Identifying verification goals

- What *questions* do we want to answer?
 - Examples:
 - In what locations does the model have the best performance?
 - Are there regimes in which the forecasts are better or worse?
 - Is the probability forecast well calibrated (i.e., reliable)?
 - Do the forecasts correctly capture the natural variability of the weather?

Other examples?

Identifying verification goals (cont.)

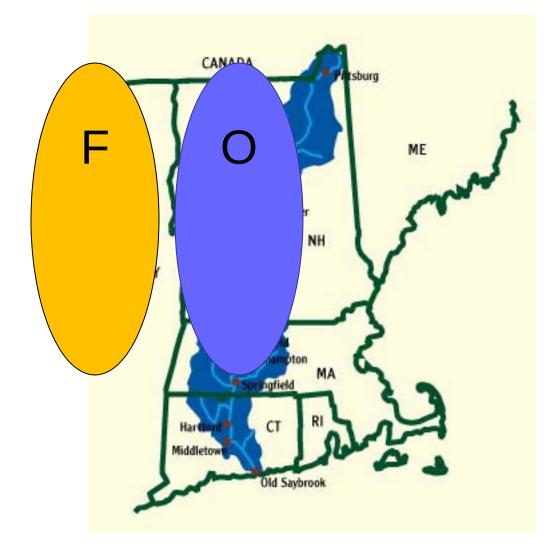
- What forecast performance <u>attribute</u> should be measured?
 - Related to the *question* as well as the type of forecast and observation
- Choices of verification statistics/measures/graphics
 - Should match the type of forecast and the attribute of interest
 - Should measure the quantity of interest (i.e., the quantity represented in the question)

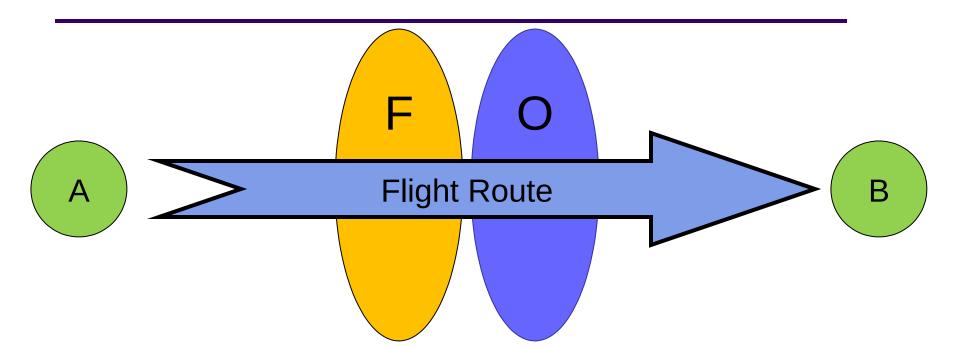

Forecast "goodness"

Depends on the quality of the forecast

AND

• The user and his/her application of the forecast information


Good forecast or bad forecast?


Many verification approaches would say that this forecast has NO skill and is very inaccurate.

Good forecast or Bad forecast?

If I'm a water manager for this watershed, it's a pretty bad forecast...

Good forecast or Bad forecast?

If I'm an aviation traffic strategic planner...

Different users have different ideas about what makes a forecast good It might be a pretty good forecast

Different verification approaches can measure different types of "goodness"

Forecast "goodness"

- Forecast quality is only one aspect of forecast "goodness"
- Forecast value is related to forecast quality through complex, non-linear relationships
 - In some cases, improvements in forecast quality (according to certain measures) may result in a <u>degradation</u> in forecast value for some users!
- *However* Some approaches to measuring forecast quality can help understand goodness
 - Examples
 - Diagnostic verification approaches
 - New features-based approaches
 - Use of multiple measures to represent more than one attribute of forecast performance
 - Examination of multiple thresholds

Basic guide for developing verification studies

Consider the users ...

- ... of the forecasts
- ... of the verification information
- What aspects of forecast quality are of interest for the user?
 - Typically (always?) need to consider multiple aspects
- **Develop verification questions** to evaluate those aspects/attributes
- <u>Exercise</u>: What verification questions and attributes would be of interest to ...
 - ... operators of an electric utility?
 - ... a city emergency manager?
 - ... a mesoscale model developer?
 - ... aviation planners?

Basic guide for developing verification studies

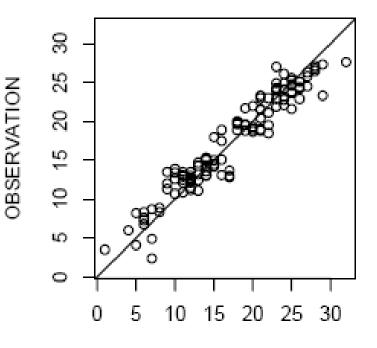
Identify observations_that represent the <u>event</u> being forecast, including the

- Element (e.g., temperature, precipitation)
- Temporal resolution
- Spatial resolution and representation
- Thresholds, categories, etc.

Identify multiple verification attributes that can provide answers to the questions of interest

<u>Select measures and graphics</u> that appropriately measure and represent the attributes of interest

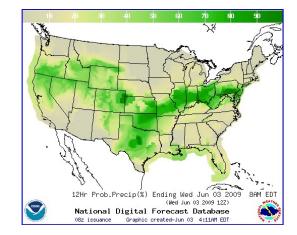
<u>Identify a standard of comparison</u> that provides a reference level of skill (e.g., persistence, climatology, old model)

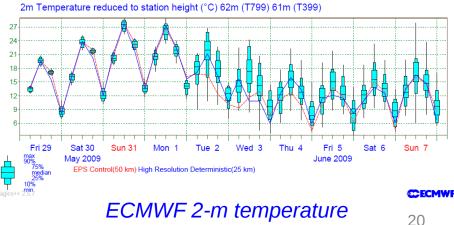


FORECASTS AND OBSERVATIONS

Types of forecasts, observations

- Continuous
 - Temperature
 - Rainfall amount
 - 500 mb height
- Categorical
 - Dichotomous
 - Rain vs. no rain
 - Strong winds vs. no strong wind
 - Night frost vs. no frost
 - Often formulated as Yes/No
 - Multi-category
 - Cloud amount category
 - Precipitation type
 - May result from *subsetting* continuous variables into categories
 - <u>Ex</u>: Temperature categories of 0-10, 11-20, 21-30, etc.

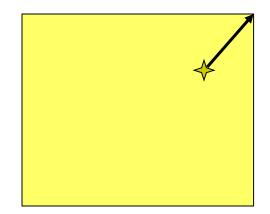

ISTANBUL TEMPERATURE

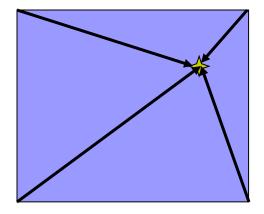

FORECAST

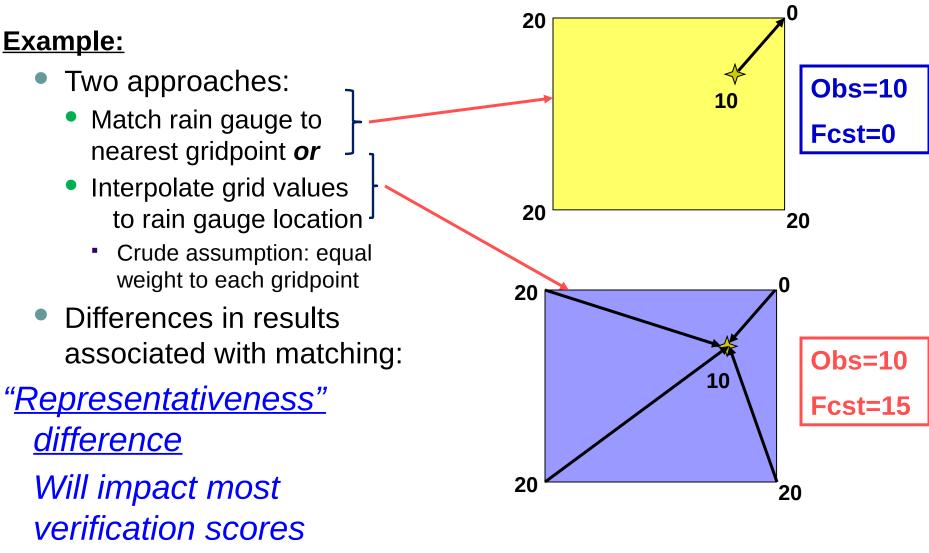
Types of forecasts, observations

- Probabilistic
 - Observation can be dichotomous, multi-category, or continuous
 - Precipitation occurrence Dichotomous (Yes/No)
 - Precipitation type Multi-category
 - Temperature distribution Continuous
 - Forecast can be
 - Single probability value (for dichotomous events)
 - Multiple probabilities (discrete probability distribution for multiple categories)
 - Continuous distribution
 - For dichotomous or multiple categories, probability values may be limited to certain values (e.g., multiples of 0.1)

2-category precipitation forecast (PoP) for US


Ensemble


- Multiple iterations of a continuous or categorical forecast
 - May be transformed into a probability distribution
- Observations may be continuous, dichotomous or multi-category


meteogram for Helsinki

- May be the most difficult part of the verification process!
- Many factors need to be taken into account
 - Identifying observations that represent the forecast event
 - <u>Example</u>: Precipitation accumulation over an hour at a point
 - For a gridded forecast there are many options for the matching process
 - Point-to-grid
 - Match obs to closest gridpoint
 - Grid-to-point
 - Interpolate?
 - Take largest value?

- Point-to-Grid and Grid-to-Point
- Matching approach can impact the results of the verification

Final point:

- It is not advisable to use the model analysis as the verification "observation"
- Why not??

Final point:

- It is not advisable to use the model analysis as the verification "observation"
- Why not??

Issue: Non-independence!!

What would be the impact of non-independence?
 "Better" scores... (not representative)

OBSERVATION CHARACTERISTICS AND THEIR IMPACTS

Observations are NOT perfect!

- Observation error vs predictability and forecast error/uncertainty
- Different observation types of the same parameter (manual or automated) can impact results
- Typical instrument errors are:
 - For temperature: +/- 0.1∘C
 - For wind speed: speed dependent errors but ~ +/- 0.5 m/s
 - For precipitation (gauges): +/- 0.1 mm (half tip) but up to 50%
- Additional issues: Siting issues (e.g., shielding/exposure)
- In some instances "forecast" errors are very similar to instrument limits

Effects of observation errors

- Observation errors add uncertainty to the verification results
 - True forecast skill is unknown
 - Extra dispersion of observation PDF

Effects on verification results

- RMSE overestimated
- Spread more obs outliers make ensemble look under-dispersed
- Reliability poorer
- Resolution greater in BS decomposition, but ROC area poorer
- CRPS poorer mean values
- Basic methods available to take into account the effects of observation error
- More samples can help (reliability of results)
- Quantify actual observation errors as much as possible

STATISTICAL BASIS FOR VERIFICATION

Statistical basis for verification

Any verification activity should begin with a thorough examination of the statistical properties of the forecasts and observations.

- E.g. many tools are based on assumptions of normality (Gaussian distribution). Does this hold for the dataset in question?
- Is the forecast capturing the observed range?
- Do the forecast and observed distributions match/agree?
- Do they have the same mean behavior, variation etc?

Statistical basis for verification

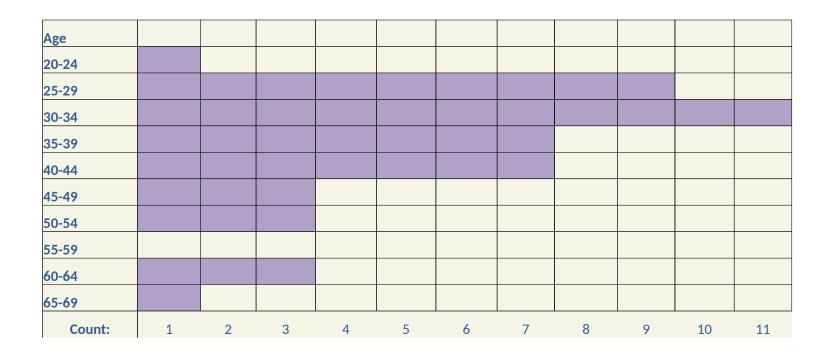
Beyond the need to assess the characteristics of the data...

Joint, marginal, and conditional distributions are useful for understanding the statistical basis for forecast verification

- These distributions can be related to specific summary and performance measures used in verification
- Specific attributes of interest for verification are measured by these distributions

Statistical basis for verification

Basic (marginal) probability


$$p_x = \Pr(X = x)$$

is the probability that a random variable, *X*, will take on the value *x*

<u>Example</u>:

- *X* = age of tutorial participant (students + teachers)
- What is an estimate of Pr(X=30-34) ?

Marginal distribution of "age"

N = 45 Pr (Age is 30-34) = Pr(X=30-34) Pr (Age is 30-34) = Pr(X=30-34) Pr (Age is 30-34) = 11 Total number of participants = 11 45 = 0.24

Joint probability $p_{x,y} = \Pr(X = x, Y = y)$ = probability that <u>both</u> events *x* and *y* occur

Example: What is the probability that a participant's age is between 30 and 34 (X = "30-34") AND the participant is female (Y = "female")

= Pr (*X* = 30-34, *Y* = *female*)

В

Joint distribution of "age" and "gender"

Age											
20-24											
25-29	e e	F		F		М	М	М	М		
30-34	F	F	F	F	F	F	F	М	М	М	М
35-39	F	F	F	F	F	М	М				
40-44	E.	F	F	F	F	М	М				
45-49	F	М	М								
50-54	М	М	М								
55-59											
60-64	F	F	М								
65-69	М										
Count:	1	2	3	4	5	6	7	8	9	10	11

N=-4455

 $\frac{Pr(participant's agge is 30-34 \underline{amd} \text{ participant is female})}{= Pr(X=30-34 \underline{AND}Y=female})$

$$6 = \frac{Number of females aged 30-34}{Total number of participants} = \frac{7}{45} = 0.16$$

Basic probability

Conditional probability $p_{x,y} = \Pr(X = x | Y = y)$

= probability that event x is true (or occurs) given that event y is true (or occurs)

<u>Example</u>: If a participant is female, what is the likelihood that she is between 30-34 years old?

Conditional age distributions

N	Female				Age	Male			N				
0								20-24					1
5								25-29					4
7								30-34					4
5								35-39					2
5								40-44					2
1								45-49					2
0								50-54					3
0								55-59					0
2								60-64					1
0								65-69					1
25	7	6	5	4	3	2	1	Count	1	2	3	4	20

Pr(X = 30 - 34 | Y = female)

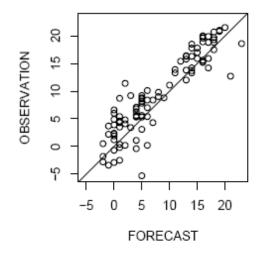
 $=\frac{\text{\# of females between 30 and 34}}{\text{Total number of females}}$

$$=\frac{7}{25}=0.28$$

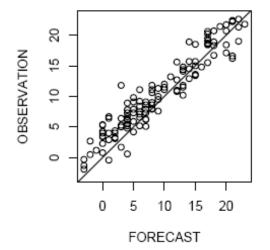
How does this probability compare to the overall probability of being between 30-34 years of age? ³⁷ Verification can be represented as the process of evaluating the joint distribution of forecasts and observations, p(f,x)

- All of the information regarding the forecast, observations, and their relationship is represented by this distribution
- Furthermore, the joint distribution can be factored into two pairs of conditional and marginal distributions:

$$p(f, x) = p(F = f | X = x)p(X = x)$$
$$p(f, x) = p(X = x | F = f)p(F = f)$$


Decompositions of the joint distribution

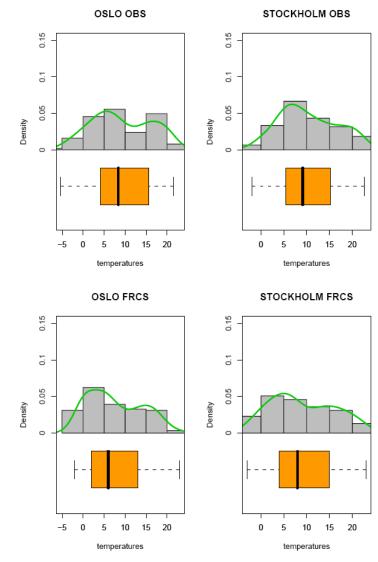
- Many forecast verification attributes can be derived from the conditional and marginal distributions
- Likelihood-base rate decomposition

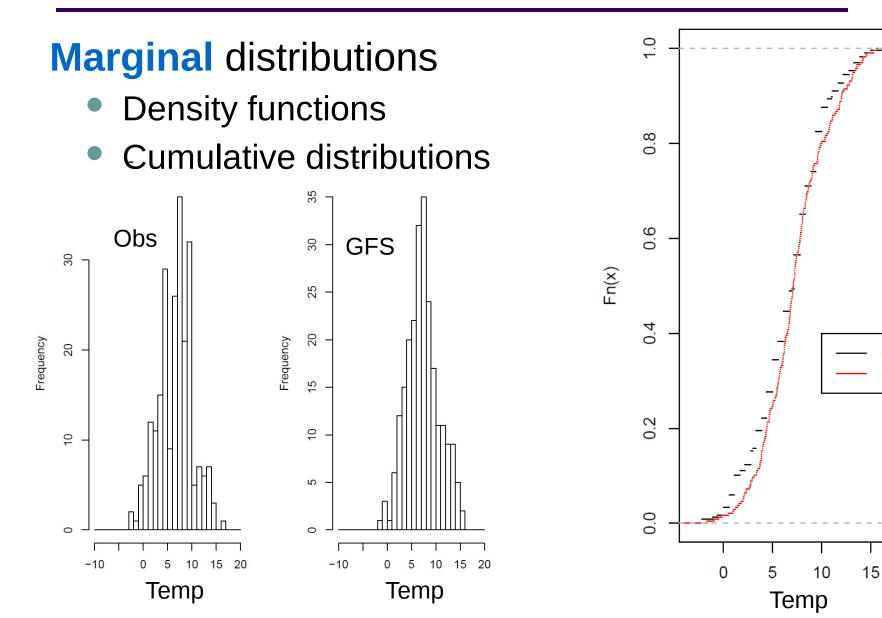

$$p(f, x) = \underbrace{p(F = f \mid X = x)}_{\text{Likelihood}} \underbrace{p(X = x)}_{\text{Base rate}}$$

• Calibration-refinement decomposition p(f,x) = p(X = x | F = f)p(F = f)Calibration Refinement

OSLO TEMPERATURE

STOCKHOLM TEMPERATURE


40


Joint distributions

- Scatter plots
- Density plots
- 3-D histograms
- Contour plots

Marginal distributions

- Stem and leaf plots
- Histograms
- Box plots
- Cumulative distributions
- Quantile-Quantile plots

Ob GF

42

Conditional distributions

- Conditional quantile plots
- Conditional boxplots
- Stem and leaf plots

Exercise: Stem and leaf plots

	Date 2003	Observed rain??	Forecast (probability)	
Probability	Jan 1	No	0.3	
forecasts	Jan 2	No	0.1	
(Tampere)	Jan 3	No	0.1	
(1011) (1010)	Jan 4	No	0.2	
	Jan 5	No	0.2	
	Jan 6	No	0.1	
	Jan 7	Yes	0.4	
	Jan 8	Yes	0.7	
	Jan9	Yes	0.7	
	Jan 12	No	0.2	
	Jan 13	Yes	0.2	
	Jan 14	Yes	1.0	
	Jan 15	Yes	0.7	

Stem and leaf plots: Marginal and conditional

Marginal distribution of Tampere probability forecasts Conditional distributions of Tampere probability forecasts

	Forecast probability						
0.0							
0.1							
0.2							
0.3							
0.4							
0.5							
0.6							
0.7							
0.8							
0.9							
1.0							

Obs precip = No		Obs precip = Yes			
	0.0				
	0.1				
	0.2				
	0.3				
	0.4				
	0.5				
	0.6				
	0.7				
	0.8				
	0.9				
	1.0				

Instructions: Mark X's in the appropriate cells, representing the forecast probability values for Tampere.

The resulting plots are one simple way to look at marginal and conditional distributions.

What are the differences between the Marginal distribution of probabilities and the Conditional distributions? What do we learn from those differences?

COMPARISON AND INFERENCE

Comparison and inference

Skill scores

- A skill score is a measure of *relative performance*
 - <u>Ex</u>: How much more accurate are my temperature predictions than climatology? How much more accurate are they than the model's temperature predictions?
 - Provides a comparison to a **standard**
- Measures percent improvement over the standard
- Positively oriented (larger is better)
- Choice of the standard matters (*a lot*!)

Question: Which standard of comparison would be more difficult to "beat": <u>climatology</u> or <u>persistence</u>

For

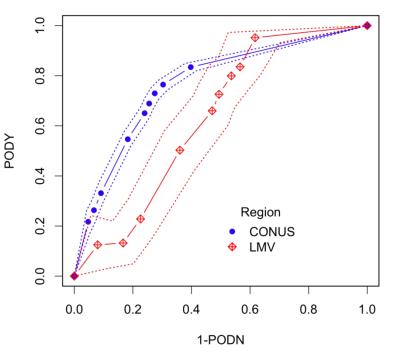
- A 72-hour precipitation forecast?
- A 6-hour ceiling forecast?

Generic skill score definition:

$$\frac{M - M_{ref}}{M_{perf} - M_{ref}}$$

Where M is the verification measure for the forecasts, M_{ref} is the measure for the reference forecasts, and M_{perf} is the measure for perfect forecasts

$$\begin{aligned} \mathbf{Example: for } M \mathbf{E}_{fcst} &= \frac{\mathbf{M} \mathbf{E}_{fcst} + \mathbf{S}_{fcst} + \mathbf{E}_{fcst} +$$


Types of references

Туре	Example	Properties
Random	Equitable Threat Score	Well understood statistical benchmarkNot physically meaningful
Persistence	Constructed skill score	 Measure of predictability (predictability is low when persistence is a poor forecast) Show value added by running NWP model
Sample climate	Constructed skill score	 One step further removed than persistence, i.e. smoothed Retains predictability element due to regime dependence
Long-term climatology	Constructed skill score, extremes	 Easiest reference to beat, smoothest Care required with respect to representativeness, pooling issues, climate change trends

Comparison and inference

Uncertainty in scores and measures should be estimated whenever possible!

- Uncertainty arises from
 - Sampling variability
 - Observation error
 - Representativeness differences
 - Others?
- Erroneous conclusions can be drawn regarding improvements in forecasting systems and models
- Methods for confidence intervals and hypothesis tests
 - Parametric (i.e., depending on a statistical model)
 - Non-parametric (e.g., derived from resampling procedures, often called "bootstrapping")

More on this topic to be presented tomorrow

VERIFICATION ATTRIBUTES

Verification attributes

- Verification attributes measure different aspects of forecast quality
 - Represent a range of characteristics that should be considered
 - Many can be related to joint, conditional, and marginal distributions of forecasts and observations

Verification attribute examples

Bias

- (Marginal distributions)
- Correlation
 - Overall association (Joint distribution)
- Accuracy
 - Differences (Joint distribution)
- Calibration
 - Measures conditional bias (Conditional distributions)
- Discrimination
 - Degree to which forecasts discriminate between different observations (Conditional distribution)

Desirable characteristics of verification measures

- Statistical validity
- Properness (probability forecasts)
 - "Best" score is achieved when forecast is consistent with forecaster's best judgments
 - "Hedging" is penalized
 - Example: Brier score
- Equitability
 - Constant and random forecasts should receive the same score
 - Example: Gilbert skill score (2x2 case); Gerrity score
 - No scores achieve this in a more rigorous sense
 - Ex: Most scores are sensitive to bias, event frequency

SUMMARY

Miscellaneous issues

- In order to be *verified*, forecasts must be formulated so that they are *verifiable*!
 - <u>Corollary</u>: All forecast should be verified *if* something is worth forecasting, it is worth verifying
- Stratification and aggregation
 - Aggregation can help increase sample sizes and statistical robustness <u>but</u> can also hide important aspects of performance
 - Most common regime may dominate results, mask variations in performance
 - Thus it is very important to *stratify results into meaningful, homogeneous sub-groups*

Verification issues cont.

Observations

- No such thing as "truth"!!
- Observations generally are more "true" than a model analysis (at least they are relatively more independent)
- Observational uncertainty should be taken into account in whatever way possible
 - e.g., how well do adjacent observations match each other?

Some key things to think about ...

Who...

…wants to know?

What...

- ... does the user care about?
- ... kind of parameter are we evaluating? What are its characteristics (e.g., continuous, probabilistic)?
- ... thresholds are important (if any)?
- ... forecast resolution is relevant (e.g., site-specific, areaaverage)?
- ... are the characteristics of the obs (e.g., quality, uncertainty)?
- ... are appropriate methods?

Why...

...do we need to verify it?

Some key things to think about...

How...

...do you need/want to present results (e.g., stratification/aggregation)?

Which...

- ...methods and metrics are appropriate?
- methods are required (e.g., bias, event frequency, sample size)

Stem and leaf plots: Marginal and conditional distributions

Marginal distribution of Tampere probability forecasts

	Forecast probability						
0.0							
0.1	X	X	X				
0.2	X	X	X	X			
0.3	X						
0.4	X						
0.5							
0.6							
0.7	X	X	X				
0.8							
0.9							
1.0	X						

Conditional distributions of Tampere probability forecasts

Obs precip = No							Obs precip = Yes		
				0.0					
	X	X	X	0.1					
	X	X	X	0.2	X				
			X	0.3					
				0.4	X				
				0.5					
				0.6					
				0.7	X	X	X		
				0.8					
				0.9					
				1.0	X				