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The monster(s) In the closet...

What do we lose/risk
by ignoring
observation
uncertainty?

What can we gain by
considering it?

What can we do?




Outline

What are the issues? Why do we
care?

What are some approaches for
quantifying and dealing with
observation errors and uncertainties?




Sources of error and

uncertainty

assocliated with observations

Biases In
frequency or value

Instrument error

Random error or

noise

Reporting errors

1 Example:

1 Missing

1 observations

| interpreted as
“grg”

Representativeness
error

Precision error
Conversion error

Analysis
error/uncertainty

Other?

averages computed alter converting missing observa, :forr mzem reports.



Issues: Analysis definitions

Many varieties of RTMA 2 m temperature
analyses are e oo
available

(How) Have they
been verified?
Compared?

What do we know
about analysis
uncertainty?




Issue - Data filtering for assimilation and QC
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Impacts: Observation selection

éVeriﬁcation with different
datasets leads to
different results

10-90% Envelope of Eta Model Precipitation Verification
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Random subsetting of
observations also
changes results

From E. Tollerud
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Issue: Obs uncertainty leads to under-
estimation of forecast performance
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Approaches for coping with
observational uncertainty

B [ndirect estimation of obs uncertainties
through verification approaches

B |ncorporation of uncertainty information
into verification metrics

B Treat observations as probabilistic /
ensembles

B Assimilation approaches




Indirect approaches for coping with
observational uncertainty

observed forecast

Neighborhood or

fuzzy verification

approaches
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Direct approaches for coping with
observational uncertainty

Compare forecast error to known
observation error
B |f forecast error is smaller, then

0 A good forecast

B |f forecast error is larger, then
[0 A bad forecast

Issue: The performance of many (short-
range) forecasts is approaching the size
of the obs uncertainty!
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Direct approaches for coping with
observational uncertainty

Bowler, 2008 (MWR)

B Methods for reconstructing contingency table
statistics, taking into account errors in
classification of observations

Ciach and Krajewski (1999)

B Decomposition of RMSE into components due to
“true” forecast errors and observation errors

RMSE, = \/RMSE? + RMSE?

Where RMSE, s the RMSE of the observed values
vs. the true values
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Direct approaches for coping with
observational uncertainty

Candille and Talagrand (QJRMS, 2008)

B Treat observations as probabilities
(new Brier score decomposition)

B Perturb the ensemble members with
observation error

Hamill (2001)
B Rank histogram perturbations
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Direct approaches for coping
with observational uncertainty

B. Casati et al.
B \Wavelet reconstruction

Gorgas and Dorninger, Dorninger and
Kloi

B Develop and apply ensembles to represent
observation uncertainty (VERA)

B Compare ensemble forecasts to ensemble
analyses
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Casati wavelet approach

ANALYSIS

Use wavelets to
represent precipitation
gauge analyses

Use wavelet-based
approach

B Reconstruct a
precipitation field from

"

250
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1.0

0.1

0.0

sparse gauges

observation

B Apply scale-sensitive
verification

[Recall: Manfred Dorninger’s
presentation yesterday on
wavelet-based intensity-
scale spatial verification
approach]

From B. Casati

This approach...

*Accounts for existence of
features and coherent spatial
structure + scales

*Accounts forgauge network
density

*Preserves gauge precip.
values at their locations




Example: 6h acc (mm)
27" Aug 2003, 6:00 UTC
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» Account for existence spatial
structures on different scales

» Account for gauge network
density

» Value at station location is
equal to gauge value
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3. Representativeness and forecast filtering
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4. Reconstruct forecast field i
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CONT WAV REC OBS
VARG K
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Discrete wavelets = squared
areas with fix location; these
are not always representative

Eliminate discrete effect by
moving the wavelet support
and averaging

- Continuous wavelets
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4. Confidence (uncertainty) mask
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For each scale (e.g. 160 km resolution scale) provide
confidence/uncertainty associated to reconstructed fields

large number of gauges <> confidence
small number of gauges < - uncertainty
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5. Verification

on different scales, but only
where obs are available
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1. Energy squared:
Er?(X)=<X?>

Measures the quantity of
events and their intensity
at each scale => BIAS.,
scale structure

2. MSE Skill Score:
MSE( Y, X)
EI] (XH'EH (Y)

(related to correlation)

From B. Casati



VERA Application (Dorninger
and Klnihar)

Data

VERA: Vienna Enhanced Resolution Analysis used to
correct the surface observations and to interpolate
them to a regular grid. —

Czech Republic }

VERA Ensembles: Main structures in spatial fields
defined by wavelet transforms, on this field
perturbations gets applied. Resolution 8 km, hourly,
two different set-up’s (“std” and “equ-qc”), 50
members []

Forecast: COSMO-LEPS (CLE) provided by Arpae-SIMC
Emilia-Romagna. 10 km resolution interpolated on
VERA grid, every three hour, 16 members
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Flg 1: Schematic plut of theﬁvestlgated Area and City [2]
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Verification - RMSE

RMSE: Vienna HW 06/20 UTC 12 to 06/22 UTC 12 RMSE equ-gc¢: Vienna HW 06/20 UTC 12 to 06/22 UTC 12
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Fig.3: RMSE calculated with VERA reference and CLE mean (initial time: Fig.4: RMSE additionally calculated with VERA ensemble (Boxplot) and CLE
06/20 12 UTC) mean (initial time: 06/20 12 UTC)

Dorninger and Kloiber
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Verification - Time Evolution

14 Vienna HW 06/20 UTC 12 to 06/22 UTC 12

Vienna HW 06/20 UTC 12 to 06/22 UTC 12
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Dorninger and Kloiber
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Comparing observation ensemble to
forecast ensemble

(Dorninger and Kloiber)
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Summary and conclusion

Observation uncertainties can have
large impacts on verification results

Obtaining and using meaningful
estimates of observational error remains
a challenge

Developing “standard” approaches for
incorporating this information in
verification progressed in recent years -
but still a distance to go... room for new
researchers!
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DISCUSSION /
COMMENTS / QUESTIONS
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