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Or… “There is no Such Thing as TRUTH”
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The monster(s) in the closet…

 What do we lose/risk 
by ignoring 
observation 
uncertainty?

 What can we gain by 
considering it?

 What can we do?



33

Outline

 What are the issues? Why do we 
care?

 What are some approaches for 
quantifying and dealing with 
observation errors and uncertainties?
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Sources of error and uncertainty 
associated with observations

 Biases in 
frequency or value

 Instrument error
 Random error or 

noise
 Reporting errors

 Representativeness 
error

 Precision error
 Conversion error
 Analysis 

error/uncertainty
 Other?

Example: 
Missing 
observations 
interpreted as 
“0’s”
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Issues: Analysis definitions

 Many varieties of 
analyses are 
available

 (How) Have they 
been verified? 
Compared?

 What do we know 
about analysis 
uncertainty?

RTMA 2 m temperature



Issue – Data filtering for assimilation and QC

700 hPa analysis; Environment Canada; 1200 UTC, 17Jan 2008

From L. 
Wilson



Impacts: Observation selection

Verification with different 
datasets leads to 
different results

From E. Tollerud

Random subsetting of 
observations also 

changes results
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Issue: Obs uncertainty leads to under-
estimation of forecast performance

From Bowler 2008 (Met. Apps)

850 mb Wind 
speed forecasts

Assumed error = 
1.6 ms-1

With error

Error removed

Ens Spread
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Approaches for coping with 
observational uncertainty

 Indirect estimation of obs uncertainties 
through verification approaches

 Incorporation of uncertainty information 
into verification metrics

 Treat observations as probabilistic / 
ensembles

 Assimilation approaches
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Indirect approaches for coping with 
observational uncertainty

 Neighborhood or 
fuzzy verification 
approaches

 Other spatial 
methods

observed forecast

(Atger, 2001)

Vary 
distance 

and 
threshold
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Direct approaches for coping with 
observational uncertainty

 Compare forecast error to known 
observation error
 If forecast error is smaller, then

 A good forecast

 If forecast error is larger, then
 A bad forecast

 Issue: The performance of many (short-
range) forecasts is approaching the size 
of the obs uncertainty!
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Direct approaches for coping with 
observational uncertainty

 Bowler, 2008 (MWR)
 Methods for reconstructing contingency table 

statistics, taking into account errors in 
classification of observations

 Ciach and Krajewski (1999)
 Decomposition of RMSE into components due to 

“true” forecast errors and observation errors

Where             is the RMSE of the observed values 
vs. the true values

eRMSE

2 2
o t eRMSE RMSE RMSE 
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Direct approaches for coping with 
observational uncertainty

 Candille and Talagrand (QJRMS, 2008)
 Treat observations as probabilities 

(new Brier score decomposition)
 Perturb the ensemble members with 

observation error
 Hamill (2001)

 Rank histogram perturbations 



Direct approaches for coping 
with observational uncertainty

 B. Casati et al.
 Wavelet reconstruction

 Gorgas and Dorninger, Dorninger and 
Kloiber
 Develop and apply ensembles to represent 

observation uncertainty (VERA)
 Compare ensemble forecasts to ensemble 

analyses
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Casati wavelet approach
 Use wavelets to 

represent precipitation 
gauge analyses

 Use wavelet-based 
approach
 Reconstruct a 

precipitation field from 
sparse gauges 
observation

 Apply scale-sensitive 
verification

[Recall: Manfred Dorninger’s 
presentation yesterday on 
wavelet-based intensity-
scale spatial verification 
approach]

From B. Casati

This approach…
•Accounts for existence of 
features and coherent spatial 
structure + scales
•Accounts forgauge network 
density
•Preserves gauge precip. 
values at their locations
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From B. Casati
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From B. Casati
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From B. Casati
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From B. Casati



VERA Application (Dorninger 
and Kloiber)

VERIFICATION OF ENSEMBLE FORECASTS INCLUDING OBSERVATION UNCERTAINTY 21



Verification - RMSE

VERIFICATION OF ENSEMBLE FORECASTS INCLUDING OBSERVATION UNCERTAINTY 22

Fig.3: RMSE calculated with VERA reference and CLE mean (initial time: 
06/20 12 UTC)

Fig.4: RMSE additionally calculated with VERA ensemble (Boxplot) and CLE 
mean (initial time: 06/20 12 UTC)

Dorninger and Kloiber



Verification - Time Evolution 

VERIFICATION OF ENSEMBLE FORECASTS INCLUDING OBSERVATION UNCERTAINTY 23

Fig.5: Time series of VERA Ensemble (std) and all CLE runs (initial time: 
06/20 12 UTC) 

Fig.6: Time series of VERA Ensemble (equ-qc) and all CLE runs (initial time: 
06/20 12 UTC) 

Dorninger and Kloiber



Comparing observation ensemble to 
forecast ensemble 
(Dorninger and Kloiber)

 CRPS
 Modified ROC
 Distance metrics
 Distribution 

measures
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Summary and conclusion

 Observation uncertainties can have 
large impacts on verification results

 Obtaining and using meaningful 
estimates of observational error remains 
a challenge

 Developing “standard” approaches for 
incorporating this information in 
verification progressed in recent years – 
but still a distance to go… room for new 
researchers!



DISCUSSION / 
COMMENTS / QUESTIONS
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