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Motivations for MV verification
Data assimilation as a multivariate problem
Structures and physical processes
Detecting non-meteorological structures/patterns

The problems with MV verification
univariate as subset of multivariate statistics
Dimensionality
Beyond multivariate Gaussian analysis?

Some examples
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Definition:

univariate verification in weather prediction: single
gridpoint, single lead time, single variable with ”many”
observations
multivariate verification: several gridpoints, several lead
times, several variables in all possible combinations with
respective observations
all aspects of spatial verifications are covered by
multivariate verification

Question:

Do observations and simulations coincide in structure ?
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The roots, 1

general approach to physics based weather forecasting was
introduced by Vilhelm Bjerknes (1862-1951) in 1904

observe the atmosphere

generate a continous field of
initial values (”data
assimilation”)

apply the laws of physics to
advance in time

issue as forecast

(verification after the
forecasts, not mentioned by
V. Bjerknes)

https://en.wikipedia.org/wiki/Vilhelm Bjerknes

#/media/File:Vilhelm Bjerknes Bust 01.jpg
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The roots, 2

Let me remind you that ”everything in statistics” is explained by
Bayes-Theorem (Thomas Bayes, ∼ 1701 - 1761)

[~θ|~o] = [~o|~θ]
[θ]

[~o]
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~o the observations in space and time described by its pdf
[~o]
~θ the control variables in space, time and model
parameters with pdf [~θ]

find the maximum of the conditional pdf [~θ|~o]
!

= Max
or estimates the most probable control variables given the
observations

E(θ|~o) =

∫
θ[~θ|~o]dθ

but the full conditional pdf [~θ|~o] contains much more
information
every pdf is necessarily a MV pdf
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This can formally be solved by

[~θ|~o] = [~o|~θ]
[θ]

[~o]

=

∫
[~o, ~m|~θ]d ~m

[θ]

[~o]

=

∫
[~o, |~m~θ][~m|~θ]d ~m

[θ]

[~o]

in case of maximisation [~o] is not necessary.
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Data assimilation

Expressing the likelihood [~o, |~m~θ] and the prior [~m|~θ] as
MV-Gaussians, making the assumption that the major
contribution to the integral comes from the maximum of the
exponent (Laplace method) we get

J =
1
2

(~o−~H(~m))T R−1(~o−~H(~m))+
1
2

(~m− ~M(~θ))T B−1(~m− ~M(~θ))

~θs = min~θJ

where ~H(~m) is the socalled forward operator which maps the
physical variables of the forecast ~m to the measurable
quantities ~o and ~M(~Θ) is the forecast model which takes the
parameters ~Θ to produce the actual forecast ~m which is a very
large dimensional vector containing all prognostic variables at
all vertical levels and all horizontal gridpoints/grid
volumes/wave amplitudes (typical size ∼ 107 − 109)
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Dynamic modelling

The physics, e.g. continuity equation of a hydrostatic
atmosphere in σ = p

ps
coordinates

d
dt

ln ps +

∫ 1

0

~∇σ · ~vhdσ = 0

introduce dependencies
in the horizontal through ~∇σ · ~vh

in the vertical through
∫ 1

0
~∇σ · ~vhdσ

in time through d
dt ln ps

and between the variables ps and ~vh

similar for the remaining set of dynamic equations
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The Forecaster

known from weather
forecasting ”smoke plume”:
mean ± Min,Max
instead time also height
instead 1 - 15 days also 1-
15 years from medium
range climate forecasts
or global mean
temperature of the 20th
century from CMIP

T2m forecast Stuttgart
summer 2010
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Preliminary summary:
the Bjerknes weather forecasting chain has shown that

data assimilation is a multivariate statistical process joining
multiple observations in space, time and variable with their
counterparts in a weather forecasting model
weather forecasting with a dynamical model is based on
physical connections between different variables in space
and time
use of forecasts from numerical processes implies the use
of ”realistic” structures / features from the dynamical
weather forecasting model
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Preliminary summary cont.:

it is only the verification step, which (mostly) ignores the
dependency structure between different variables, in space
and time using univariate verification
but already the verification of a one gridpoint, one lead
time, one variable forecast is a bivariate statistical problem
because one evaluates the bivariate joint probability
density function (e.g. estimated by contingency tables or
scatter diagrams; Murphy and Winkler, 1987)
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But what are the difficulties in multivariate verification/statistics?

MV statistics is only weakly covered during a typical
meteorological education, despite one of the major text
books
Anderson, T. W. (1984). Multivariate statistical analysis.
Wiley and Sons, New York, NY. with its first edition in 1958
the dimensionality problem or the ”curse of dimension”
standard multivariate Gaussian density is not applicable in
all situations: cloud cover, precipitation (above threshold)
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let’s start with discrete forecasts
in K classes e.g. K = 2 for precip forecasts ≷ than a
threshold at q forecast positions
to be verified at r observational positions (in space and/or
in lead time).

Then the joint probability mass distribution between the
forecast vs observational outcomes

has K q+r − 1 independent entries
(−1) due of the normalization constraint that the sum over
all joint probability entries is one.
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for contingency tables with K = 2 with q = r = 1 we get
22 − 1 = 3 entries,
for tables based on a tercile segmentation K = 3 we get
32 − 1 = 8 a quadratic q + r = 2 increase
increasing the number of points for the K = 2 case e.g. to
q = r = 2 gives already 24 − 1 = 15 necessary entries
which leads to an exponential increase.

All entries have to be estimated from observations:
you must have at least a sample size of O(K q+r − 1) to fill
in on average one observation into each joint probability
bin.
consider working with binary variables on a 3 by 3 grid in
observations and forecasts,
this would require the incredible sample size
> 218 − 1 ∼ 270,000.
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Problems can be remedied by turning to parametric probability
mass distribution in case of discrete forecasts or parametric
probability density functions

Gibbs distributions [~x ] = 1
Z exp(−V (~x)) with Z as the

normalizing constant (partition function) and V a convex
function (potential well)
e.g. for a discrete binary field like precipitation below/aboe
a threshold xi ∈ {0,1}

V =
∑

i

mixi +
1
2

∑
i

∑
j

Jijxixj

with parameters mi und Jij = Jji , such that
(q + r) + 1

2(q + r)(q + r + 1) = (q+r)
2 (q + r + 3) unknowns

have to be determined which grows quadratically
unfortunately for multivariate parametric probability mass
distribution [~x ] standard parameter estimation does not
work. because Z (mi , Jij) is in general not known in closed
form
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Much easier for various (but not all) continous variables: using
the multivariate Gauss density

[~x ] =
1
Z

exp(−V (~x))

with
Z =

√
2πq+r det Σ

V (~x) =
1
2

(~x − µ)T Σ−1(~x − ~µ))

~x = (~m, ~o) µ = (~µm, ~µo)

Σ =

(
Σmm Σmo
ΣT

mo Σoo

)
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with well known methods since decades (see the monograph
by TW Anderson (1958, 2nd Ed. 1984)) e.g for estimating from
samples of ~f , ~o the location parameter µ and the covariance
matrix Σ using maximum likelihood techniques (q+r)

2 (q + r + 3)
parameters or a quadratic increase in complexity.
Unfortunately the estimated covariance matrix Σ has to fulfill
certain requirements

positive definitness ~xT Σ~x > 0 if ~x 6= 0
non singular Σ−1 has exist or Σ has to be of full rank
rk(Σ) = (q + r)
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Standard maximum likelihood estimator for Σ from a joint
sample of forecasts and observations {~di = (~mi , ~oi), i = 1, I}
reads

Σ
est
= Σmle =

1
I − 1

D′(D′)T

with D′ the (q + r)×m anomaly data matrix build from columns
~d ′i = ~di − (~mm, ~mo) and

(~mm, ~mo) =
1
I

I∑
i=1

~di

now lets calculate the rank of Σmle

rk(Σmle) = rk(
1

I − 1
D′(D′)T ) ≤ rk(D′) ≤ min(I − 1,q + r)

meaning that Σmle is only of full rank of the sample size I is
larger than the vector dimension q + r
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It is even worse...
We do not need the actual, estimated covariance matrix Σmle
but its invers Σ−1

mle, to model completely the multivariate
probability density [~x ]. It turns out that the estimated covariance
matrix ist (almost) unbiased

E [Σmle] = Σ

but the invers of the estimated covariance is strongly biased

E [Σ−1
mle] =

I − 1
I − q − 1

Σ−1

depending on the ratio I−1
I−(q+r)−1 , meaning that even

non-singular estimated covariance matrices lead to massively
distorted invers matrices as long as I is not massively larger
than (q + r)
This are the remains of the ”curse of dimensions” in case of a
multivariate Gaussian density (also present in data assimilation)
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Ways out of the problem
data or dimension reduction: instead of q + r grid points
think and compute in q̃ + r̃ ”structures”, ”modes”, ”patterns”
defined by the problem/researcher e.g. from simple models
with q̃, r̃ � q, r
not necessarily only principle component analysis (EOF) or
comparable statistical techniques
alternative methods to estimate non-singular invers
covariance matrices: shrinkage methods and GLASSO
methods
combinations of both
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Added value of multivariate approach, 21 day mean August
2007, 3 Radiosonde stations with 9 Levels each: Nancy,
Idar-Oberstein, Stuttgart, Röpnack et al Mon.Weath.Rev.
(2013) based on the log Bayes factor

classical univariate two multivariate approaches
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Multivariate extension of continous rank probability score CRPS
for probabilistic forecasts: energy score

es
(
fM(~m), ~o

)
= E{‖~m − ~o‖} − 1

2
E{‖~m − ~m′‖}

parametrize predictive pdf as
Gaussian-pdf NV (~µM ,Σ

−1
M )

Gaussian-mixture 1
K
∑

k NV (~mk ,Σ
−1
e )

both parameter sets estimated from ensemble realizations
(post-processing).
Score calculated across all available observations

ESM =
1
T

T∑
t=1

es(fM(~m, t), ~ot )

with the skill score relative to climate

ESS = 1− ESM

ESclim
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Non-Gaussian probability density functions: Gaussian mixtures
combine Gaussian versatility with modelling non-Gaussian
pdf’s

[~x |K , ~xk ,Σ
−1
e ] =

K∑
k=1

NV (~x |~xk ,Σ
−1
e )
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Comparison of 4 EP systems TIGGE data base, Stuttgart,
T2m, July-Nov. 2010, energy score based, ten-day forecasts
Keune et al. Mon. Weath. Rev. (2014)

Positive skill score for the daily mean temperature sequence
lead days 1 to 10
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Combine ten day forecast sequences at eight stations: 80-dim
vector
With vs without spatial correlations between eight German
station T2m
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The whole Bjerknes chain for an integrated forecasting
system is based on multivariate statistics, relevant
structures, dynamical connections in space, time and
between variables
except the verification: current verification measure largely
ignore these connections dictated by physics
taking into account the structural information or
”correlations”: better scores compared to the univariate
case in two examples
MV verification comes with extra expenses related to the
”curse of dimension”
which can be treated by methods from MV statistics
coming from image processing, mode expansion etc.


	Introduction
	The roots
	An integrated forecasting system
	The difficulties
	Two examples
	Conclusion and take-home

