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Introduction

 Statistical inference is needed in many circumstances, 
not least in forecast verification
Examples:
 Agricultural experiments
 Medical experiments
 Estimating risks

Question:  What do these examples have in common with 
forecast verification?

 Goals
 Discuss some of the basic ideas of modern statistical 

inference
 Consider how to apply these ideas in verification

 Emphasis: interval estimation



Inference – the framework

 We have data that are considered to be a 
sample from some larger population

 We wish to use the data to make inferences 
about some population quantities 
(parameters)
Examples:  population mean, variance, correlation, 
POD, MSE, etc.



Why is inference necessary?

 Forecasts and forecast verification are associated with many kinds of 
uncertainty

 Statistical inference approaches provide ways to handle some of that 
uncertainty

There are some things that you know to be true, and others that you 

know to be false; yet, despite this extensive knowledge that you have, 

there remain many things whose truth or falsity is not known to you. 

We say that you are uncertain about them. You are uncertain, to 

varying degrees, about everything in the future; much of the past is 

hidden from you; and there is a lot of the present about which you do 

not have full information. Uncertainty is everywhere and you cannot 

escape from it.

Dennis Lindley, Understanding Uncertainty (2006). Wiley-Interscience. 4



Accounting for uncertainty

 Observational
 Model

 Model parameters
 Physics
 Verification scores

 Sampling
 Verification statistic is a realization of a random 

process
 What if the experiment were re-run under identical 

conditions?  Would you get the same answer?



Our population

The tutorial age distribution

% male: 44%

Mean age

Overall: 38

For males: 40 

For females: 37
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What would we expect the results to be 
if we take samples from this population?

Would our estimates be the same as 
what’s shown at the left?

How much would the samples differ from 
each other?

Age                      

20-24                      

25-29 F F F F F M M M M    

30-34 F F F F F F F M M M M

35-39 F F F F F M M        

40-44 F F F F F M M        

45-49 F M M                

50-54 M M M                

55-59                      

60-64 F F M                

65-69 M                    

Count: 1 2 3 4 5 6 7 8 9 10 11



Sampling results

 Sa
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Sample 1 results:
• % males too low
• Mean age for males slightly 

too large
• Mean age for females much 

too large
• Overall mean is too large
• Medians for females and 

“All” are too small

Random Sampling:
5 samples of 12 
people each

 
% Male % Female Mean Age Median Age

Male Female All Male Female All

Real 44% 56% 40 37 38 39 35 37

Sample 1 33% 67% 41 43 42 34 42 40

N=45

N=12



Sampling results cont.

Summary
 Very different results among samples
 % male almost always over-estimated in this 

small number of random samples
8

 
% Male % Female Mean Age Median Age

Male Female All Male Female All

Real 44% 56% 40 37 38 39 35 37
Sample 1 33% 67% 41 43 42 34 42 40
Sample 2 50% 50% 33 35 34 32 35 32
Sample 3 50% 50% 43 33 38 41 31 36
Sample 4 58% 42% 37 37 37 39 37 38
Sample 5 50% 50% 39 40 40 41 31 36



Types of inference

 Point estimation – simply provide a single number to estimate the 
parameter, with no indication of the uncertainty associated with it 
(suggests no uncertainty)

 Interval estimation 
 One approach: attach a standard error to a point estimate
 Better approach: construct a confidence interval

 Hypothesis testing
 May be a good way to address whether any difference in results between 

two forecasting systems could have arisen by chance. 
 Note: Confidence intervals and Hypothesis tests are closely 

related  
 Confidence intervals can be used to show whether there are significant 

differences between two forecasting systems
 Confidence intervals provide more information than hypothesis tests (e.g., 

uncertainty bounds, asymmetries)



Approaches to inference

1. Classical (frequentist) parametric inference
2. Bayesian inference
3. Non-parametric inference
4. Decision theory
5. …



Approaches to inference

1. Classical (frequentist) parametric inference
2. Bayesian inference
3. Non-parametric inference
4. Decision theory
5. …

Focus will be on classical and non-parametric 
confidence intervals (CIs)



Confidence Intervals (CIs)

“If we re-run an experiment N 
times (i.e., create N random 
samples), and compute a      
(1-α)100% CI for each one, 
then we expect the true 
population value of the 
parameter to fall inside          
(1-α)100% of the intervals.”

Confidence intervals can be 
parametric or non-parametric…



What is a confidence interval?
Given a sample value of a measure (statistic), find an 
interval with a specified level of confidence (e.g., 95%, 
99%) of including the corresponding population value of the 
measure (parameter). 

http://wise.cgu.edu/portfolio/demo-confidence-interval-creation/

Note:
 The interval is random; the 

population value is fixed 
 The confidence level  is the 

long-run probability that 
intervals include the 
parameter, NOT the 
probability that the parameter 
is in the interval



Confidence Intervals (CI’s)

 Parametric
 Assume the observed sample is a realization from 

a known population distribution with possibly 
unknown parameters (e.g., normal)

 Normal approximation CI’s are most common.
 Quick and easy



Confidence Intervals (CI’s)

 Nonparametric
 Assume the distribution of the observed sample is 

representative of the population distribution
 Bootstrap CI’s are most common
 Can be computationally intensive, but still easy 

enough



Normal Approximation CI’s

Is a (1-α)100% Normal CI for ϴ, where 
 ϴ is the statistic of interest (e.g., the forecast mean)
 se( ) is the standard error for the statisticϴ
 zv is the v-th quantile of the standard normal distribution 

where v= α/2.
 A typical value of α is 0.05 so (1-α)100% is referred to as the 95th 

percentile Normal CI

Estimate

Standard normal 
variate

Population (“true”) 
parameter



Normal Approximation CI’s

θ

se(θ)

zα/2
(note: se = Standard error)



Normal Approximation CI’s
 Normal approximation is appropriate for 

numerous verification measures

Examples:  Mean error, Correlation, ACC, BASER, 
POD, FAR, CSI

 Alternative CI estimates are available for 

other types of variables 

Examples: forecast/observation variance, GSS, 
HSS, FBIAS

 All approaches expect the sample values to 

be independent and identically distributed (iid)



Application of Normal Approximation CI’s

 Independence assumption (i.e., “iid”) – 
temporal and spatial
 Should check the validity of the independence 

assumption
 Relatively simple methods are available to account 

for first-order temporal correlation
 More difficult to account for spatial correlation (an 

advanced topic…)

 Normal distribution assumption
 Should check validity of the normal distribution 

(e.g., qq-plots, Kolmagorov-Smirnov test, 2 
test)



Normal CI Example

POD (Hit Rate)= 0.55
FAR= 0.72

What are appropriate CI’s for these two 
statistics?



CIs for POD and FAR

 Like several other verification measures POD and FAR 
represent the proportion of times that something occurs or 
something doesn’t occur
 POD: The proportion of hits that were forecast
 FAR: The proportion of forecasts that weren’t associated with an event 

occurrence 
 Denote these proportions by p1 and p2.

 CIs can be found for the underlying probability of
 A correct forecast, given that the event occurred
 A non-event given that the forecast was of an event
 Call these probabilities θ1 and θ2.

 Statistical analogy: 
 Find a confidence interval for the ‘probability of success’ in a binomial 

distribution
 Various approaches can be used



22

 Binomial CIs
 Distributions of p1 and p2 can be approximated by Gaussian 

distributions with 
 Means θ1 and θ2 and 
 Variances p1(1-p1)/n1 and p2(1-p2)/n2 

[n’s are the ‘numbers of trials’ (number of observed Yes for POD and number of 
forecasted Yes for FAR)] 

 The intervals have endpoints

where 

 Other approximations for binomial CIs are available which 
may be somewhat better than this simple one in some cases

and

for a 95% interval

1 1
1

2
1

(1 )p p
p z

n


2 2
2

2
2

(1 )p p
p z

n


2
1.96z 



Normal CI Example

POD (Hit Rate)= 0.55 ≈ (0.41, 0.69) 
FAR= 0.72 ≈ (0.63, 0.81)

95% normal 
approximation CI 
shown in red

Note: These CIs are symmetric



IID Bootstrap Algorithm

(Nonparametric) 
Bootstrap CI’s

1. Resample with replacement from the sample,

 x1, x2, ..., xn   

2. Calculate the verification statistic(s) of interest from 
the resample in step 1.

3. Repeat steps 1 and 2 many times, say B times, to 
obtain a sample of the verification statistic(s) θB .

4. Estimate (1-α)100% CI’s from the sample in step 3. 



Mustang example
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Price
0 5 10 15 20 25 30 35 40 45

MustangPrice Dot Plot

Our best estimate of the average 
price of used Mustangs is 
$15,980

How do we estimate the 
confidence interval for Mustang 
prices?

n 25, x  15.98, s 11.11



Original Sample Bootstrap Sample



Suppose we have a random 
sample of 6 people:



Original 
Sample

A simulated “population” to sample from



Bootstrap Sample:  Sample with 
replacement from the original sample, 
using the same sample size.

Original 
Sample

Bootstrap  Sample



Original 
Sample

Bootstrap 
Sample

Bootstrap 
Sample

Bootstrap 
Sample

●
●
●

Bootstrap 
Statistic

Sample 
Statistic

Bootstrap 
Statistic

Bootstrap 
Statistic

●
●
●

Bootstrap 
Distribution



Bootstrap Distribution: Empirical Distribution 
(Histogram) of statistic calculated on repeated samples 

5%
5%

Bounds for 
90% CI

Values of statistic θB



Bootstrap CI’s

IID Bootstrap Algorithm: Types of CI’s

1. Percentile Method CI’s

2. Bias-corrected and adjusted (BCa)1

3. ABC

4. Basic bootstrap CI’s

5. Normal approximation

6. Bootstrap-t

1See Gilleland 2010 for more information about alternative methods

More representative
but also much more
Compute-intensive



Bootstrap CI Example

CIs not symmetric
Asymmetry could be due to small sample size



Pairwise comparisons

Pairwise comparisons are often advantageous 
when comparing performance for two 
forecasting systems
 Reduced variance associated with the 

comparison statistic (for normal distribution 
approaches)

 More “efficient” testing procedure
 More “powerful” comparisons

34
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A06 - 12hr Lead Time

Aggregated 
GSS : 

All of the 
scores are 

similar at low 
thresholds

Scores seem 
to be much 
different at 

larger 
thresholds

Optimal

No Skill

6 hours accumulated precipitation evaluation
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Aggregated 
GSS : 

Overlapping 
confidence 

intervals 
indicate no 
significant 
difference 
because of 

large sample 
uncertainty

Statistical 
significance 

indicated when 
CIs don’t 
overlap

Confidence intervals can indicate if differences are 
Statistically Significant (SS). This plot shows no SS 

differences between model scores but some SS 
between thresholds for a given model

6 hours accumulated precipitation evaluation

Optimal

No Skill



Two ways to examine scores

CI about Pairwise 
Differences
may allow for 
differentiation of model 
performance

CI about Actual Scores
may be difficult to differentiate 
model performance differences

Model 1

Model 2

Diff:
Model 1 - Model 
2

SS – CIs do not encompass 0



CI application considerations

Normal approximation
 Quick
 Generally pretty 

accurate
 Only valid for certain 

measures

Bootstrap approach
 Speed depends on 

number of points
 Using grids can be 

expensive (quicker with 
points)

 Speed depends on 
number of resamples
 Recommended #: 1000
 If that’s too many: 

determine where solutions 
converge to pick the value



Reminders and other considerations

 Normal approaches only work for some verification 
measures
 Need to evaluate appropriateness of normal approx for 

verification statistics
 For all CIs:

 Need to consider non-independence and ways to account 
for it

 Multiplicity (computing lots of confidence intervals) 
makes the error rate much larger than indicated by 


 CIs provide a meaningful and useful way to 
compare forecast performance

39
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