

Inference

Barbara Brown National Center for Atmospheric Research Boulder Colorado USA

bgb@ucar.edu

with contributions from Ian Jolliffe, Tara Jensen, Tressa Fowler, & Eric Gilleland

> May 2017 Berlin, Germany

Introduction

 Statistical inference is needed in many circumstances, not least in forecast verification

Examples:

- Agricultural experiments
- Medical experiments
- Estimating risks

Question: What do these examples have in common with forecast verification?

Goals

- Discuss some of the basic ideas of modern statistical inference
- Consider how to apply these ideas in verification
- <u>Emphasis</u>: interval estimation

Inference – the framework

- We have data that are considered to be a sample from some larger population
- We wish to use the data to make inferences about some population quantities (parameters)

Examples: population mean, variance, correlation, POD, MSE, etc.

Why is inference necessary?

- Forecasts and forecast verification are associated with many kinds of uncertainty
- Statistical inference approaches provide ways to handle some of that uncertainty

There are some things that you know to be true, and others that you know to be false; yet, despite this extensive knowledge that you have, there remain many things whose truth or falsity is not known to you. We say that you are **uncertain** about them. You are **uncertain**, to varying degrees, about everything in the future; much of the past is hidden from you; and there is a lot of the present about which you do not have full information. **Uncertainty** is everywhere and you cannot escape from it.

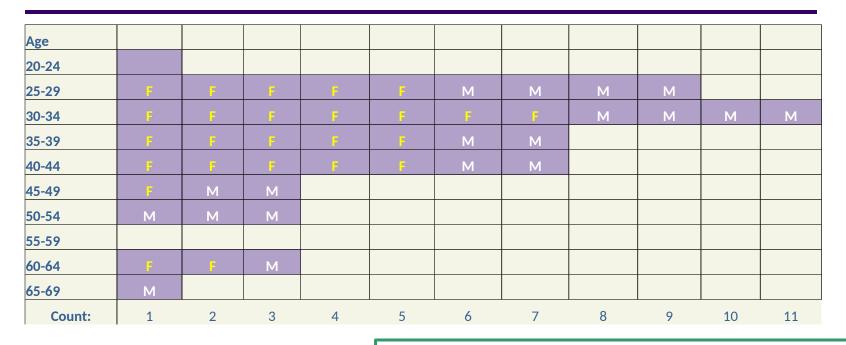
Dennis Lindley, Understanding Uncertainty (2006). Wiley-Interscience.

Accounting for uncertainty

- Observational
- Model
 - Model parameters
 - Physics
 - Verification scores
- Sampling

- Verification statistic is a <u>realization</u> of a random process
- What if the experiment were re-run under identical conditions? Would you get the same answer?

Our population



The tutorial age distribution What would we expect the results to be if we take samples from this population?

% male: 44%

Mean age

Overall: 38

For males: 40

For females: 37

Would our estimates be the same as what's shown at the left?

How much would the samples differ from each other?

Sampling results

	% Male	% Female	Mean Age			Median Age			
			Male	Female	All	Male	Female	All	
Real	44%	56%	40	37	38	39	35	37	N=45
Sample 1	33%	67%	41	43	42	34	42	40	N=12

Random Sampling: 5 samples of 12 people each

Sample 1 results:

- % males too low
- Mean age for males slightly too large
- Mean age for females much too large

7

- Overall mean is too large
- Medians for females and "All" are too small

Sampling results cont.

	% Male	% Female	Mean Age			Median Age		
			Male	Female	All	Male	Female	All
Real	44%	56%	40	37	38	39	35	37
Sample 1	33%	67%	41	43	42	34	42	40
Sample 2	50%	50%	33	35	34	32	35	32
Sample 3	50%	50%	43	33	38	41	31	36
Sample 4	58%	42%	37	37	37	39	37	38
Sample 5	50%	50%	39	40	40	41	31	36

<u>Summary</u>

- Very different results among samples
- % male almost always over-estimated in this small number of random samples

Types of inference

- Point estimation simply provide a single number to estimate the parameter, with no indication of the uncertainty associated with it (suggests no uncertainty)
- Interval estimation
 - **One approach**: attach a standard error to a point estimate
 - Better approach: construct a <u>confidence interval</u>
- Hypothesis testing
 - May be a good way to address whether any difference in results between two forecasting systems could have arisen by chance.
- Note: Confidence intervals and Hypothesis tests are closely related
 - Confidence intervals can be used to show whether there are significant differences between two forecasting systems
 - Confidence intervals provide more information than hypothesis tests (e.g., uncertainty bounds, asymmetries)

Approaches to inference

- 1. Classical (frequentist) parametric inference
- 2. Bayesian inference
- 3. Non-parametric inference
- 4. Decision theory
- 5.

. . .

Approaches to inference

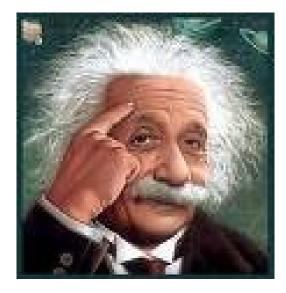
- 1. Classical (frequentist) parametric inference
- 2. Bayesian inference
- 3. Non-parametric inference
- 4. Decision theory
- 5.

. . .

Focus will be on *classical* and *non-parametric* confidence intervals (CIs)

Confidence Intervals (CIs)

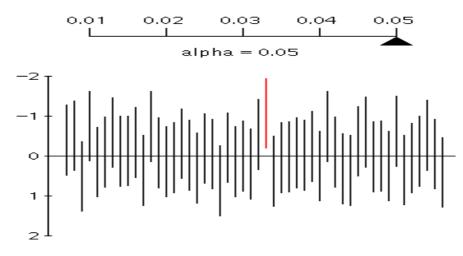
"If we re-run an experiment N times (i.e., create N random samples), and compute a $(1-\alpha)100\%$ CI for each one, then we expect the true population value of the parameter to fall inside $(1-\alpha)100\%$ of the intervals."



Confidence intervals can be parametric or non-parametric...

What is a confidence interval?

Given a sample value of a measure (statistic), find an interval with a specified level of confidence (e.g., 95%, 99%) of including the corresponding population value of the measure (parameter). Note:



- The <u>interval</u> is random; the population value is fixed
 - The confidence *level* is the long-run probability that intervals include the parameter, NOT the probability that the parameter is in the interval

1 out of 50 do not cover 0 with alpha = 0.05. 57 out of 1000 have not covered 0 with alpha = 0.05.

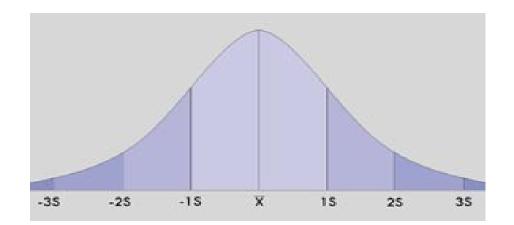
> More Intervals! New Alpha!

http://wise.cgu.edu/portfolio/demo-confidence-interval-creation/

Confidence Intervals (Cl's)

Parametric

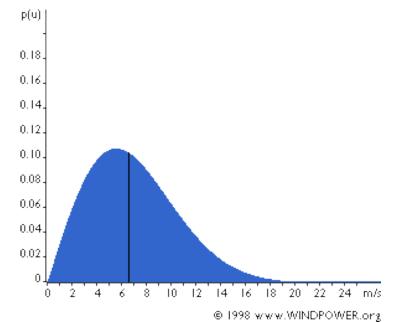
- Assume the observed sample is a realization from a known *population* distribution with possibly unknown parameters (e.g., normal)
- Normal approximation Cl's are most common.
- Quick and easy



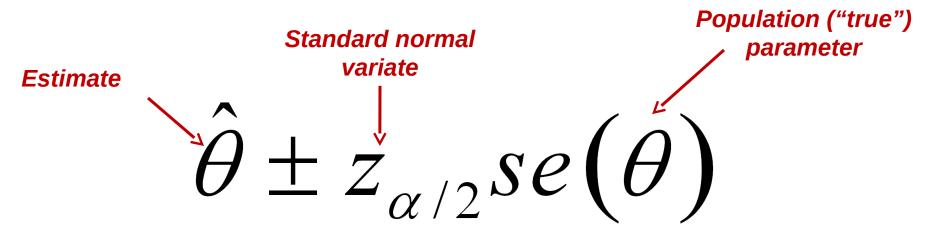
Confidence Intervals (Cl's)

Nonparametric

- Assume the distribution of the observed sample is representative of the *population* distribution
- Bootstrap Cl's are most common
- Can be computationally intensive, but still easy enough



Normal Approximation Cl's

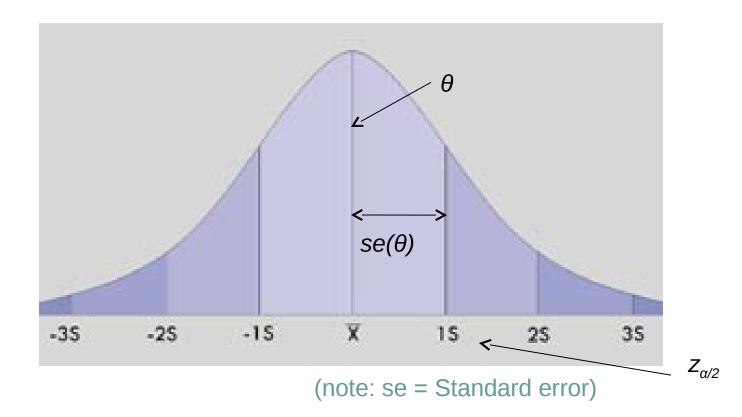


Is a $(1-\alpha)100\%$ Normal CI for Θ , where

- Θ is the statistic of interest (e.g., the forecast mean)
- $se(\Theta)$ is the standard error for the statistic
- z_v is the v-th quantile of the standard normal distribution where v= $\alpha/2$.
- A typical value of α is 0.05 so (1- α)100% is referred to as the 95th percentile Normal CI

Normal Approximation Cl's

 $\theta \pm z_{\alpha/2} se(\theta)$



Normal Approximation Cl's

 Normal approximation is appropriate for numerous verification measures

<u>Examples</u>: Mean error, Correlation, ACC, BASER, POD, FAR, CSI

 Alternative CI estimates are available for other types of variables

<u>Examples</u>: forecast/observation variance, GSS, HSS, FBIAS

 All approaches expect the sample values to be <u>independent</u> and <u>identically distributed</u> (iid)

Application of Normal Approximation Cl's

- Independence assumption (i.e., "iid") temporal and spatial
 - Should check the validity of the independence assumption
 - Relatively simple methods are available to account for first-order temporal correlation
 - More difficult to account for spatial correlation (an advanced topic...)
- Normal distribution assumption
- Should check validity of the normal distribution (e.g., qq-plots, Kolmagorov-Smirnov test, $\chi^{_2}$ test)

Normal CI Example

		Observed				
		Yes	No	Total		
חברמאו	Yes	28	72	100		
	No	23	2680	2703		
	Total	51	2752	2803		

POD (Hit Rate)= 0.55 FAR= 0.72

What are appropriate CI's for these two statistics?

Cls for POD and FAR

- Like several other verification measures POD and FAR represent the proportion of times that something occurs or something doesn't occur
 - **POD**: The proportion of hits that were forecast
 - FAR: The proportion of forecasts that weren't associated with an event occurrence
 - Denote these proportions by p_1 and p_2 .
- CIs can be found for the underlying probability of
 - A correct forecast, given that the event occurred
 - A non-event given that the forecast was of an event
 - Call these probabilities θ_1 and θ_2 .
- Statistical analogy:
 - Find a confidence interval for the 'probability of success' in a *binomial distribution*
 - Various approaches can be used

Binomial CIs

- Distributions of p₁ and p₂ can be approximated by Gaussian distributions with
 - Means θ_1 and θ_2 and
 - Variances $p_1(1-p_1)/n_1$ and $p_2(1-p_2)/n_2$

[n's are the 'numbers of trials' (number of observed Yes for POD and number of forecasted Yes for FAR)]

The intervals have endpoints

$$p_1 \pm z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1}}$$
 and $p_2 \pm z_{\alpha/2} \sqrt{\frac{p_2(1-p_2)}{n_2}}$

where $z_{\alpha/2} = 1.96$ for a 95% interval

 Other approximations for binomial CIs are available which may be somewhat better than this simple one in some cases

Normal CI Example

		Observed				
		Yes	No	Total		
ט ברמאנ	Yes	28	72	100		
	No	23	2680	2703		
	Total	51	2752	2803		

POD (Hit Rate)= $0.55 \approx (0.41, 0.69)$ FAR= $0.72 \approx (0.63, 0.81)$

95% normal approximation CI shown in red

Note: These CIs are symmetric

(Nonparametric) Bootstrap Cl's

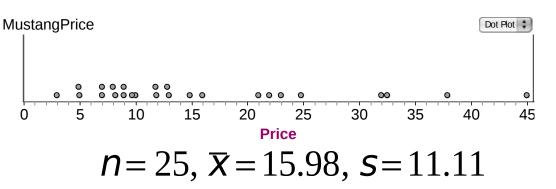
IID Bootstrap Algorithm

1. Resample *with replacement* from the sample,

*X*₁, *X*₂, ..., *X*_n

- 2. Calculate the verification statistic(s) of interest from the resample in step 1.
- 3. Repeat steps 1 and 2 many times, say B times, to obtain a sample of the verification statistic(s) θ_B .
- 4. Estimate $(1-\alpha)100\%$ CI's from the sample in step 3.

Mustang example



Our best estimate of the average price of used Mustangs is \$15,980

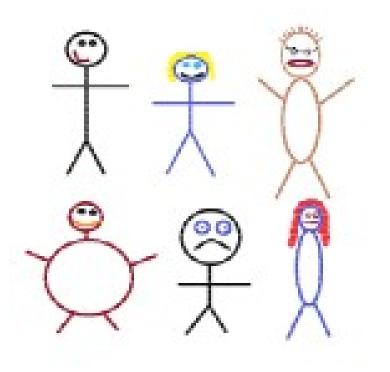
How do we estimate the confidence interval for Mustang prices?

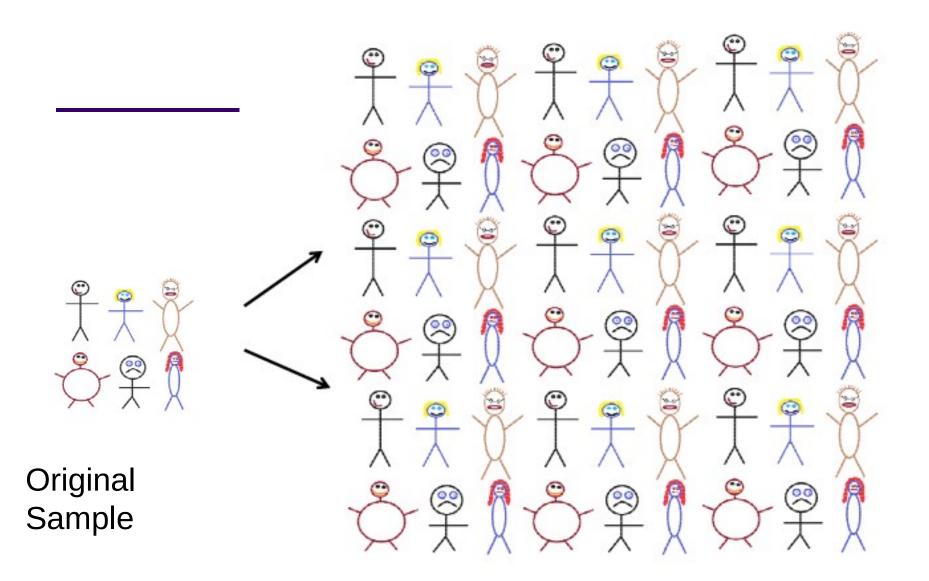
Original Sample

Bootstrap Sample

Suppose we have a random

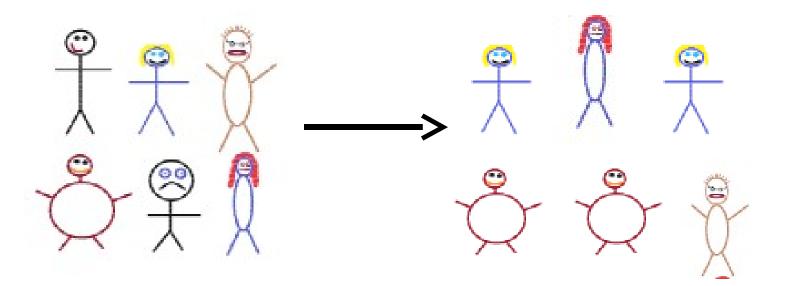
sample of 6 people:



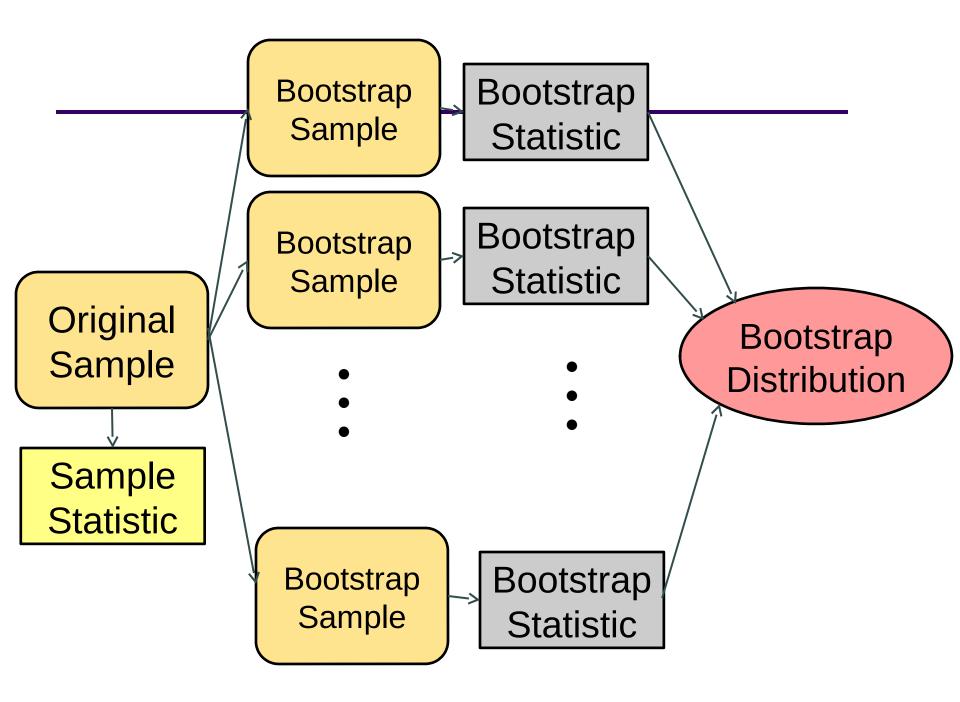


A simulated "population" to sample from

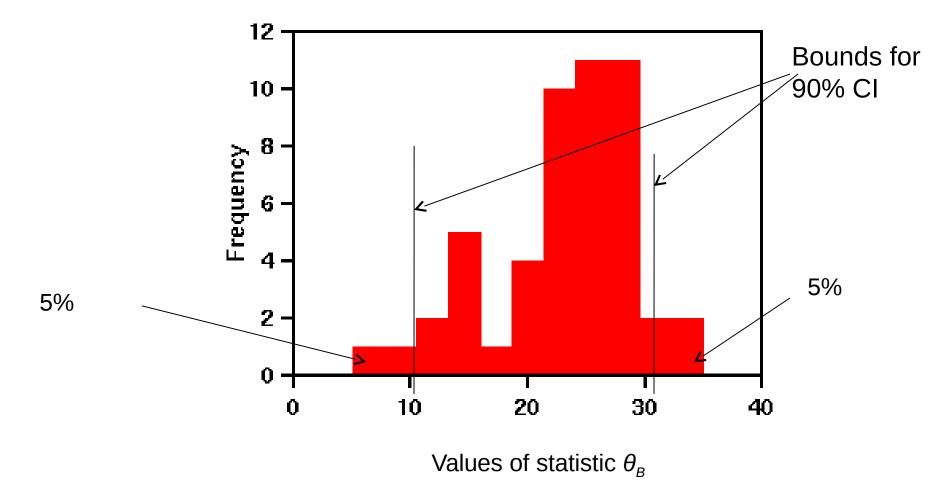
<u>Bootstrap Sample</u>: Sample with replacement from the original sample, using the same sample size.



Original Sample Bootstrap Sample



Bootstrap Distribution: Empirical Distribution (Histogram) of statistic calculated on repeated samples



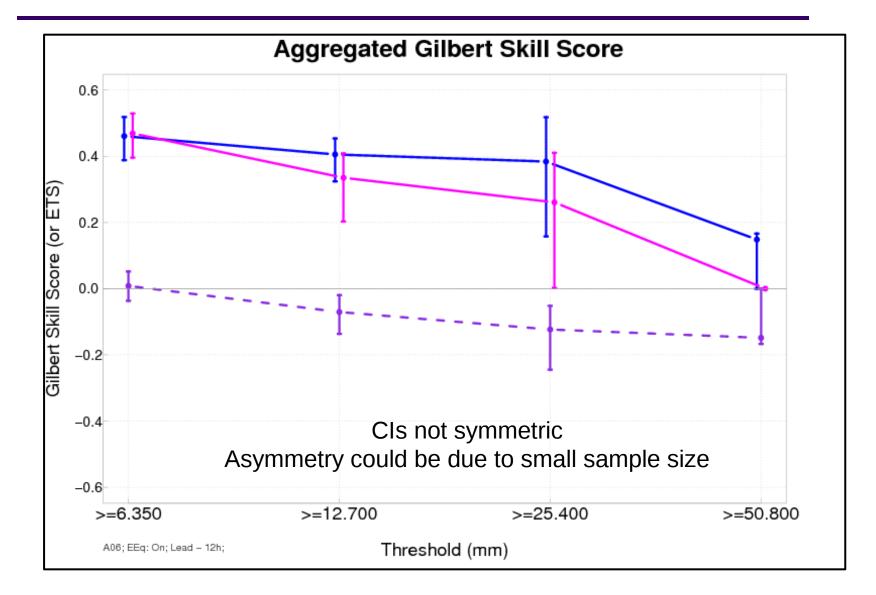
IID Bootstrap Algorithm: Types of CI's

- 1. Percentile Method CI's
- 2. Bias-corrected and adjusted (BCa)¹
- 3. ABC
- 4. Basic bootstrap Cl's
- 5. Normal approximation
- 6. Bootstrap-t

More representative but also much more Compute-intensive

¹See Gilleland 2010 for more information about alternative methods

Bootstrap CI Example

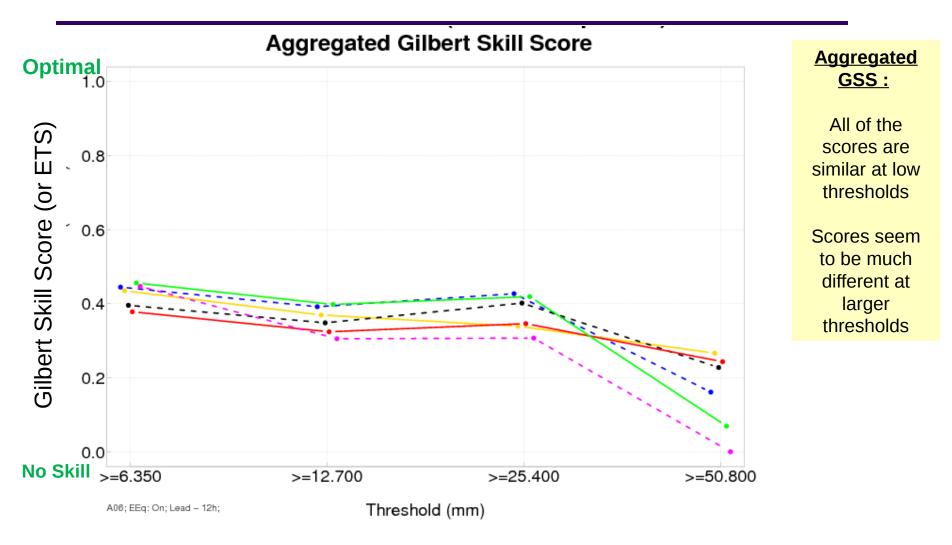


Pairwise comparisons

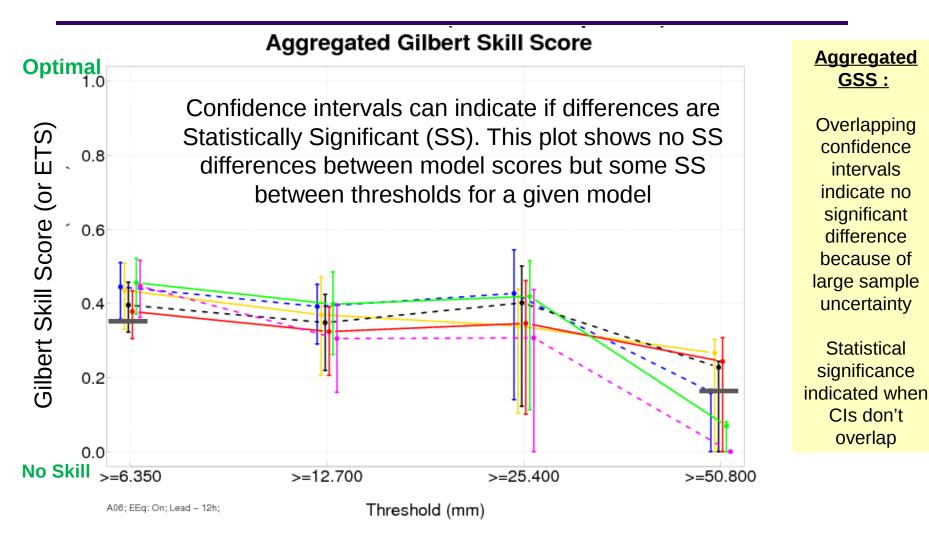
Pairwise comparisons are often advantageous when comparing performance for two forecasting systems

- Reduced variance associated with the comparison statistic (for normal distribution approaches)
- More "efficient" testing procedure
- More "powerful" comparisons

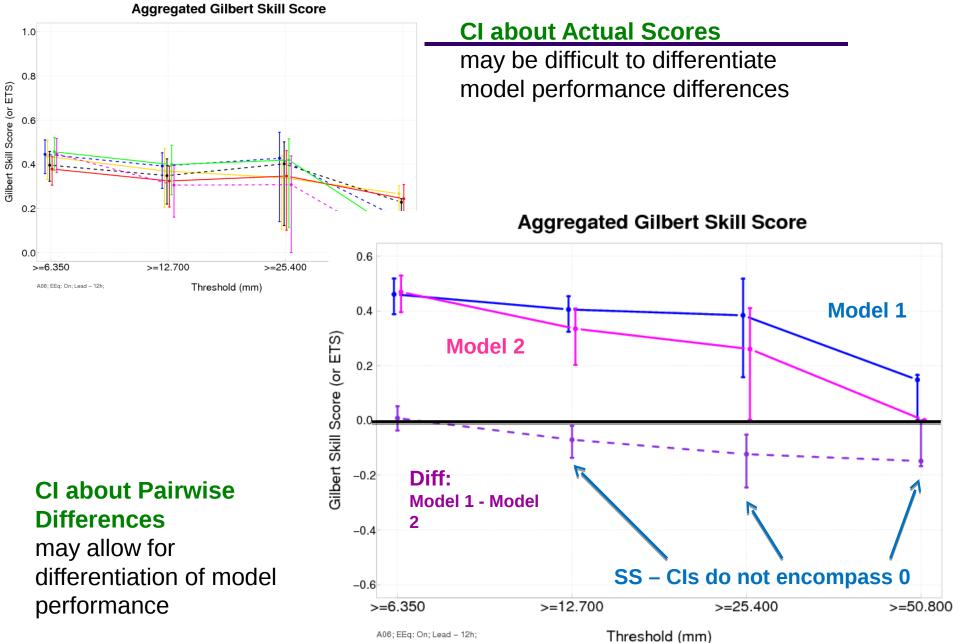
6 hours accumulated precipitation evaluation



6 hours accumulated precipitation evaluation



Two ways to examine scores



CI application considerations

Normal approximation

- Quick
- Generally pretty accurate
- Only valid for certain measures

Bootstrap approach

- Speed depends on number of points
 - Using grids can be expensive (quicker with points)
- Speed depends on number of resamples
 - Recommended #: 1000
 - If that's too many: determine where solutions converge to pick the value

Reminders and other considerations

- Normal approaches only work for some verification measures
 - Need to evaluate appropriateness of normal approx for verification statistics
- For all CIs:
 - Need to consider non-independence and ways to account for it
- Multiplicity (computing lots of confidence intervals) makes the error rate much larger than indicated by α
- CIs provide a meaningful and useful way to compare forecast performance

References and further reading

- Garthwaite PH, Jolliffe IT & Jones B (2002). Statistical Inference, 2nd edition. Oxford University Press.
- Gilleland, E., 2010: Confidence intervals for forecast verification. NCAR Technical Note NCAR/TN-479+STR, 71pp. Available at:http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-846.pdf
- Jolliffe IT (2007). Uncertainty and inference for verification measures. Wea. Forecasting, 22, 637-650.
- Jolliffe and Stephenson (2011): Forecast verification: A practitioner's guide, 2nd Edition, Wiley & sons
- JWGFVR (2009): Recommendation on verification of precipitation forecasts. WMO/TD report, no.1485 WWRP 2009-1
- Nurmi (2003): Recommendations on the verification of local weather forecasts. ECMWF Technical Memorandum, no. 430
- Wilks (2011): Statistical methods in the atmospheric sciences, Ch. 7. Academic Press
- http://www.cawcr.gov.au/projects/verification/