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Motivation:

 The „double“ penalty problem

Analysis

FC-model I (coarse)

FC-model II (fine)

+-

FC-AN• fine-scale model catches the small-
scale trough but at the wrong place 
(or time)

• gets penalized twice
• increases quadratic measures 

compared to coarse model
• true for other continuous variables 

as well (e.g., precipitation, wind 
speed, etc.)
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Traditional spatial verification
(grid point wise approach)

Compute statistics on forecast-observation pairs

– Continuous values (e.g., precipitation amount, temperature, NWP 
variables):

• mean error, MSE, RMSE, correlation

• anomaly correlation, S1 score

– Categorical values (e.g., precipitation occurrence):

• Contingency table statistics (POD, FAR, etc…)



Anomaly correlation
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Traditional spatial verification using 
categorical scores
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POD=0.39, FAR=0.63, CSI=0.24
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Traditional spatial verification
• Requires an exact match between forecasts and observations at 

every grid point

Hi res forecast
RMS ~ 4.7
POD=0, FAR=1
TS=0

Low res forecast
RMS ~ 2.7
POD~1, FAR~0.7
TS~0.3

10 10 103
fcst obs fcst obs

 Problem of "double penalty" - 
event predicted where it did not 
occur, no event predicted where 
it did occur

 Traditional scores do not say 
very much about the source or 
nature of the errors

10 10
fcst obs
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What do traditional scores not tell us ?
• Traditional approaches provide overall measures of skill but…

• They don't provide much diagnostic information about the 
forecast:
– What went wrong? What went right?

– How close is the forecast to observation (in terms of spatial thinking)?

– Does the forecast look realistic?

– How can I improve this forecast?

– How can I use it to make a decision?

• Best performance for smooth forecasts !!!

• Some scores are insensitive to the size of the errors…
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Spatial forecasts

New spatial verification techniques aim to:
• account for field spatial structure
• provide information on error in physical terms
• account for uncertainties in location (and timing)

Weather variables defined 
over spatial domains have 
coherent spatial structure 
and features

WRF
model

Stage II
radar



Spatial verification types

• Neighborhood (fuzzy) verification methods
 give credit to "close" forecasts

• Scale separation methods
 measure scale-dependent error

• Features-based methods
 evaluate attributes of identifiable features

• Field deformation
 evaluate phase errors



Spatial verification types

Gilleland, et al. 2009



Gilleland, et al. 2009
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Neighborhood (fuzzy) verification 
methods

 give credit to "close" forecasts

10 10
fcst obs

10 10
fcst obs

“close“ “not close“
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Why is it called "fuzzy"?

observation forecastobservation forecast

Squint your 
eyes!

Neighborhood verification 
methods

• Don't require an exact match between forecasts and 
observations

– Unpredictable scales
– Uncertainty in observations

 Look in a space / time neighborhood around the point of 
interest

 Evaluate using categorical, continuous, probabilistic           
scores / methods

t
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Neighborhood verification methods

Treatment of forecast data within a window:
– Mean value (upscaling)
– Occurrence of event* somewhere in window 
– Frequency of events in window  probability
– Distribution of values within window

May also look in a neighborhood of observations

* Event defined as a value exceeding a given threshold, for example, rain 
exceeding 1 mm/hr

Rainfall

F
re
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en

cy

forecast

observation
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observation forecastobservation forecastobservation forecast

Moving windows
For each combination of neighborhood size and intensity threshold, 
accumulate scores as windows are moved through the domain

observation forecast
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Neighborhood verification framework

Neighborhood methods use one of two approaches to compare 
forecasts and observations:

single observation – 
neighborhood forecast

(SO-NF, user-oriented)

neighborhood observation – 
neighborhood forecast

(NO-NF, model-oriented)

observation forecast

observation forecast
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Different neighborhood verification methods have 
different decision models for what makes a useful 

forecast

*NO-NF = neighborhood observation-neighborhood forecast,
 SO-NF = single observation-neighborhood forecast

from Ebert, Meteorol. Appl., 2008



Detailed description of Fraction  Skill Score (FSS)
(Roberts and Lean, 2008)

• We want to know
– How forecast skill varies with neighborhood size
– The smallest neighborhood size that can be used to give sufficiently 

accurate forecasts
– Does higher resolution NWP provide more accurate forecasts on 

scales of interest (e.g., river catchments)

Step 1: FC and Observation/Analysis have to be on the same grid.
Step 2: Choose suitable thresholds q (e.g.: 0.5, 1, 2, 4 mm)
Step 3: Convert FC/AN fields to binary fields IO and IM according to threshold

with Or observed rain and Mr modelled rain



Detailed description of Fraction  Skill Score (FSS)
(Roberts and Lean, 2008)

Step 4: Generate fractions for all thresholds:

Pobs  1x1 Pfcst 1x1

Pobs 35x35 Pfcst 35x35



Detailed description of Fraction  Skill Score (FSS)
(Roberts and Lean, 2008)

Step 5: Compute fraction skill score for all thresholds:
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Maximum estimation (low-skill reference) of MSE: 

(Pfcst-Pobs)2 = Pfcst
2 - 2PfcstPobs + Pobs

2  ~  Pfcst
2 + Pobs

2 =  MSEref



Detailed description of Fraction  Skill Score (FSS)
(Roberts and Lean, 2008)

Step 6: Graphical presentation for each threshold and spatial scale:

Interpretation:
•Skill increases with spatial scale 
•The smaller the displacement error the faster the skill increases with 
increasing spatial scale
•When the length of  the moving window is smaller or equal the 
displacment error there is no skill and FSS=0



Detailed description of Fraction  Skill Score (FSS)
(Roberts and Lean, 2008)

Q: What happens if size of moving window is equal to domain size?
Q: What are useful (skillfull) numbers of FSS?

fo=domain obs fraction on the grid scale (for f0=0.2(20%)  target skill: FSS=0.5+0,2/2=0.6



Detailed description of Fraction  Skill Score (FSS)
(Roberts and Lean, 2008)
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Scale separation methods
scale-dependent error

1. Which spatial scales are well represented and 
which scales have error?

2. How does the skill depend on the precipitation 
intensity?

NOTE: scale = single band spatial filter  features of different 
scales  feedback on different physical processes and model 
parameterizations

In the neighborhood based (fuzzy) verification, the scale is the 
neighborhood size (low band pass filter): as the scale increases 
the exact positioning requirements are more and more relaxed 
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What is the difference between 
neighborhood and scale separation 

approaches?

• Neighborhood verification methods
 Get scale information by filtering out higher 

resolution scales

• Scale separation methods
 Get scale information by isolating scales of interest



Nimrod case study: intense storm displaced

Step 1: Gridded data, square domain with dimension 2n 

It can be applied to any meteorological field … however, it 
was specifically designed for spatial precipitation forecasts …



Step 2: Intensity: threshold to obtain binary 
images (categorical approach)

1

0

-1

Binary Forecast

Binary Analysis Binary Error Image u=1mm/h
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Step 3: Scale  wavelet decomposition of binary 
error

Scale l=8 (640 km)

Scale l=1 (5 km)

mean (1280 km)

Scale l=6 (160 km)

Scale l=7 (320 km)

Scale l=5 (80 km) Scale l=4 (40 km)

Scale l=3 (20 km) Scale l=2 (10 km)

1
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Step 4: MSE skill score for each 
threshold and scale component
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MSE
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Sample climatology
(base rate)



Strenghts

Categorical approach  robust and resistant

Wavelets  cope with spatially discontinuous 
fields characterized by the presence of few 
sparse non-zero features

  suitable for spatial precipitation forecasts

Weaknesses

need gridded data on a square domain with 
dimension 2n 



Dorninger and Gorgas, 2012
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Features-based methods
 evaluate attributes of features



35

Feature-based approach (CRA)
Ebert and McBride, J. Hydrol., 2000

• Define entities using (user defined) threshold (Contiguous Rain 
Areas)

• Horizontally translate the forecast until a pattern matching 
criterion is met:
– minimum total squared error between forecast and observations 

– maximum correlation

– maximum overlap

• The displacement is the vector difference between the original and 
final locations of the forecast.

Observed Forecast
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CRA error decomposition
Total mean squared error (MSE) before shifting

 MSEtotal = MSEdisplacement + MSEvolume + MSEpattern

The displacement error is the difference between the mean square error before 
and after shifting

MSEdisplacement  =  MSEtotal – MSEshifted

The volume error is the bias in mean intensity

where     and     are the mean forecast and observed values after shifting.

The pattern error, computed as a residual, accounts for differences in the fine 
structure,

MSEpattern = MSEshifted - MSEvolume

2)XF(MSEvolume 

XF
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Example:  CRA verification of 
precipitation forecast over USA

1. What is the location error of the forecast?
2. How do the forecast and observed rain areas compare? Average values? 

Maximum values?
3. How do the displacement, volume, and pattern errors contribute to the total 

error?

1

2

3 1

2

3



5th Int'l Verification Methods Workshop, 
Melbourne, 1-3 December 2011 38

1st CRA



5th Int'l Verification Methods Workshop, 
Melbourne, 1-3 December 2011 39

2nd CRA
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Sensitivity to rain threshold

1 mm h-1

10 mm h-1

5 mm h-1

1 mm h-1

5 mm h-1

10 mm h-1
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Strengths of CRA

The entity-based CRA verification method has a number of 
attractive features: 

(a) It is intuitive, quantifying what we can see by eye 
(b) it estimates the location error in the forecast, 
(c) the total error can be decomposed into contributions 
from location, intensity, and pattern, 
(d) forecast events can be categorized as hits, misses, etc. 
These descriptions could prove a useful tool for monitoring 
forecast performance over time.
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Weaknesses of CRA
There are also some drawbacks to this approach: 

(a)Pattern matching: it must be possible to associate entities in the 
forecast with entities in the observations. This means that the forecast 
must be halfway decent. The verification results for a large number of 
CRAs will be biased toward the "decent" forecasts, i.e., those for which 
location and intensity errors could reliably be determined. 
(b)The user must choose the pattern matching method as well as the 
isoline used to define the entities. The verification results will be 
somewhat dependent on these choices (subjective). 
(c)When a forecast and/or observed entity extends across the boundary 
of the domain it is not possible to be sure whether the pattern match is 
optimal. If the CRA has a reasonably large area still within the domain 
then the probability of a good match is high. Ebert and McBride (2000) 
suggest applying a minimum area criterion to address this issue..
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Structure-Amplitude-Location (SAL)
Wernli et al., Mon. Wea. Rev., 2008

• Verification of rain forecasts in a defined domain
• No match of objects

SAL consists of three components:

- S  structure
- A  amplitude
- L  location

Perfect forecast: S=A=L=0



Step 1: Definition of precipitation objects







Dorninger                             
Verifikation

WS 2015

4.2.1 SAL



















Q: Look at precip fields. What do you expect for S, A and L?

FC

OBS

A: S=A=L=0; SAL is invariant against pure rotation.





SAL Examples
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Field deformation
 evaluate phase errors



• Displacement and Amplitude Score DAS
• constitutes a spatial measure belonging to the field 

verification technique
• is based on an areal image matcher using classical optical 

flow technique
• has two components: DIS and AMP (normalized with 

characteristical values)
• is applied in both observation and forecast space (to 

account for misses and false alarms)
• has been used in deterministic mode
• is coded in python and freely available

DAS in a nutshell

(Keil and Craig, WAF 2009)



Optical flow algorithm: Pyramidal Matching

1. Project observed and simulated images to same grid

2. Coarse-grain both images by averaging of 2F pixels onto one pixel 
element

3. Compute a displacement vector field that minimizes the RMSE within 
the range of +/- 2 pixel elements

4.    Repeat step 2 at successively finer scales

5. Displacement vector for every pixel results from the sum over all scales

(Mannstein et al., 2002)



Pyramidal Image Matching

observation forecast

Step 1: projection on same grid



Pyramidal Image Matching
Step 2: coarse graining F=4

observation forecast



Pyramidal Image Matching
Step 3: compute displacement vector by minimizing RMSE

observation forecast



Pyramidal Image Matching
Step 3: compute displacement vector by minimizing RMSE

observation forecast



Pyramidal Image Matching
Step 3: compute displacement vector by minimizing RMSE

observation forecast



Pyramidal Image Matching
Step 4: cycle on finer scales using morphed image

observation morphed forecast



Pyramidal Image Matching
Step 4: cycle on finer scales using morphed image

observation morphed forecast



Pyramidal Image Matching
Step 5: sum over all scales

observation morphed forecast



Pyramidal Image Matching
Step 5: sum over all scales

observation morphed forecast



Pyramidal Image Matching
Step 5: sum over all scales

observation morphed forecast



Displacement error field DIS

DIS



Displacement error field DIS
and Amplitude error field AMP

DIS AMP



DAS

DAS field: combined DIS and AMP fields



DAS has two components:
1.displacement error (of observed and forecast imagery)

2.amplitude error (RMSE of observed and morphed 
forecast imagery)

•     DAS is applied in observation and forecast space:
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(Keil and Craig, WAF 2009)



•    DAS shall be a single valued measure of forecast 
quality:

 underlying principle: complete miss = 100% AMP 
error

•          Dmax : maximum search distance
•    I0 : characteristic intensity chosen to be typical  

    of amplitude of the observed features

0max I

AMP

D

DIS
DAS 

Displacement and Amplitude Score DAS

(Keil and Craig, WAF 2009)
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Conclusions

• What method should you use for spatial 
verification?
– Depends what question(s) you would like to address

• Many spatial verification approaches
– Neighborhood – credit for "close" forecasts

– Scale separation – scale-dependent error

– Features-based – attributes of features

– Field deformation – phase and amplitude errors
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What method(s) could you use to 
verify

Neighborhood – credit for "close" forecasts
Scale separation – scale-dependent error
Features-based – attributes of features
Field deformation – phase and amplitude errors

Wind forecast (sea breeze)
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ForecastObserved

What method(s) could you use to 
verify

Neighborhood – credit for "close" forecasts
Scale separation – scale-dependent error
Features-based – attributes of features
Field deformation – phase and amplitude errors

Cloud forecast
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What method(s) could you use to 
verify

Neighborhood – credit for "close" forecasts
Scale separation – scale-dependent error
Features-based – attributes of features
Field deformation – phase and amplitude errors

5-day forecast
Analysis

Mean sea level pressure forecast
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What method(s) could you use to 
verify

Neighborhood – credit for "close" forecasts
Scale separation – scale-dependent error
Features-based – attributes of features
Field deformation – phase and amplitude errors

Tropical cyclone forecast

3-day forecastObserved
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