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Motivation: — Analysis

= FC-model | (coarse)

- The ,double” penalty problem — FC-modelli (fine)

* fine-scale model catches the small- FC-AN
scale trough but at the wrong place

(or time)

* gets penalized twice

* increases quadratic measures - +
compared to coarse model

* true for other continuous variables

as well (e.g., precipitation, wind
speed, etc.)




Traditional spatial verification
(grid point wise approach)

Compute statistics on forecast-observation pairs

— Continuous values (e.g., precipitation amount, temperature, NWP
variables):

* mean error, MSE, RMSE, correlation
* anomaly correlation, S1 score
— Categorical values (e.g., precipitation occurrence):

* Contingency table statistics (POD, FAR, etc...)



Anomaly correlation
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Traditional spatial verification using
categorical scores Contingency Table

Observed
yes no
p—N . false
S \ T yes hits
/ Q alarms
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— s : correct
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Traditional spatial verification

* Requires an exact match between forecasts and observations at
every grid point

L Problem of "double penalty" - \
event predicted where it did not )
occur, no event predicted where

it did occur /
. Hi res forecast Low res forecast
Traditional scores do not say RMS ~ 4.7 RMS ~ 2.7

very much about the source or POD=0, FAR=L  POD-1, FAR-07
nature of the errors




What do traditional scores not tell us ?

* Traditional approaches provide overall measures of skill but...

* They don't provide much diagnostic information about the
forecast:

— What went wrong? What went right?

— How close is the forecast to observation (in terms of spatial thinking)?
— Does the forecast look realistic?

— How can | improve this forecast?

— How can | use it to make a decision?
* Best performance for smooth forecasts !!!

e Some scores are insensitive to the size of the errors...



Spatial forecasts
WRF <[~
: . model [
Weather variables defined
over spatial domains have
coherent spatial structure
and features |
Stage Il <4 -
radar |-

New spatial verification techniques aim to:
* account for field spatial structure

* provide information on error in physical terms

* account for uncertainties in location (and timing)
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Spatial verification types

Neighborhood (fuzzy) verification methods
give credit to "close" forecasts

Scale separation methods

measure scale-dependent error

Features-based methods
evaluate attributes of identifiable features

Field deformation
evaluate phase errors



Spatial verification tvnes

filtering l

neighborhood scale-separation

displacement

feature-based field deformation

?

. F1G. 1. Schematic representations of the four categories of verification methods reviewed in this paper. (top) The
Gllleland’ et al 2009 neighborhood and scale-separation methods can both be considered ““filtering”” approaches while (bottom) the

feature-based and field deformation methods fall under the “displacement” category.



TABLE 1. List of individual methods considered in this paper, and the ICP, along with their abbreviations used here. References hsted are
not comprehensive; see the text and the references for further representative works.

Abbreviation Description Method type Reference(s)
BCETS Bias-corrected ETS Traditional Mesinger (2008)
CA Cluster analysis Features based* Marzban and Sandgathe (2006, 2008)
Composite Composite method Features based* Nachamkin (2005, 2009)
CRA Contiguous rain area Features based Ebert and McBride (2000);
Ebert and Gallus (2009)
DIST Distributional method Neighborhood Marsigli et al. (2006)
FQI Forecast quality index Field deformation® Venugopal et al. (2005)
FOM-DAS Forecast quality measure—displacement  Field deformation Keil and Craig (2007, 2009)
amplitude score
FSS Fractions skill score Neighborhood Roberts (2005); Roberts and Lean (2008);
Mittermaier and Roberts (2009)
IS Intensity scale Scale separation Casati et al. (2004); Casati (2009)
I'w Image warping Field deformation E. Gilleland, J. Lindstrom, and F. Lindgren
(2009, unpublished manuscript);
Lindstrom et al. (2009)
MODE Method for Object-based Diagnostic Features based Davis et al. (2006, 2009)
Evaluation
MSV Multiscale vanability Scale separation Zapeda-Arce et al. (2000); Harris et al.
(2001); Mittermaier (2006)
Neighborhood  Neighborhood based methods Neighborhood Ebert (2008, 2009)
Procrustes Cell identification and Procrustes Features based Micheas et al. (2007)
shape analysis
Procrustes2 Multiscale cell identification Scale separation-Features  Lack et al. (2009)
and Procrustes shape analysis based
SAL Structure, amplitude, and location Features based Wernli et al. (2008, 2009)
Traditional Point-based companson Point Jolliffe and Stephenson (2003)
VGM Variogram Scale separation® Marzban and Sandgathe (2009)

* A method that only loosely belongs to the given method type.

Gilleland, et al. 2009



Neighborhood (fuzzy) verification
methods
- give credit to "close" forecasts

“close* “not close*




Neighborhood verification
methods

* Don't require an exact match between forecasts and
observations

— Unpredictable scales

— Uncertainty in observations

Look in a space / time neighborhood around the point of
Interest s

Frequency

Forecast value

LI Evaluate using categorical, continuous, probabilistic
scores / methods
15



Neighborhood verification methods

Treatment of forecast data within a window:
— Mean value (upscaling)
— Occurrence of event™ somewhere in window
— Frequency of events in window =2 probability

— Distribution of values within window

May also look in a neighborhood of observations

y

observation

allliz

Rainfall
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* Event defined as a value exceeding a given threshold, for example, rain
exceeding 1 mm/hr
16



Moving windows

For each combination of neighborhood size and intensity threshold,
accumulate scores as windows are moved through the domain

observation forecast

17



Neighborhood verification framework

Neighborhood methods use one of two approaches to compare
forecasts and observations:

single observation —
neighborhood forecast

(SO-NF, user-oriented)

neighborhood observation —

neighborhood forecast

(NO-NF, model-oriented)




Different neighborhood verification methods have
different decision models for what makes a useful
forecast

Neighborhood method ':ﬁ:.:gg;g Decision model for useful forecast

Upscaling (Zepeda-Arce et al. 2000; NO-NF Resembles obs when averaged to coarser scales
Weygandt et al. 2004)

Minimum coverage (Damrath 2004) NO-NF Predicts event over minimum fraction of region
Fuzzy logic (Damrath 2004), joint i ,

orobability (Ebert 2002) NO-NF More correct than incorrect

sractions s scofe (Roueiislana NO-NF Similar frequency of forecast and observed events
Lean 2008)

gorgg;related RNSE (Fecaove o NO-NF Similar intensity distribution as observed
Pragmatic (Theis et al. 2005) SO-NF Can distinguish events and non-events
CSRR (Germann and Zawadzki 2004) SO-NF High probability of matching observed value
ZMOLgil)-event e SO-NF Predicts at least one event close to observed event
Practically perfect hindcast (Brooks et SO-NE Resembles forecast based on perfect knowledge
al. 1998) of observations

*NO-NF = neighborhood observation-neighborhood forecast,
SO-NF = single observation-neighborhood forecast

from Ebert, Meteorol. Appl., 2008



Detailed description of Fraction Skill Score (FSS)
(Roberts and Lean, 2008)

We want to know
How forecast skill varies with neighborhood size

The smallest neighborhood size that can be used to give sufficiently
accurate forecasts

Does higher resolution NWP provide more accurate forecasts on
scales of interest (e.g., river catchments)

Step 1. FC and Observation/Analysis have to be on the same grid.
Step 2: Choose suitable thresholds g (e.g.: 0.5, 1, 2, 4 mm)
Step 3: Convert FC/AN fields to binary fields I, and I,,according to threshold

|10,=q |1 M, =g
=100 <q ™ =19 m <4



Detailed description of Fraction Skill Score (FSS)
(Roberts and Lean, 2008)

S0-fso

fracton 0 10 20 30 40 50 60 70 80 90%

Step 4. Generate fractions for all thresholds:

T,_.

1-km model — \

P, = fraction of obs grid pomits = threshold —so e — | s
P, = fraction of frst grid points = threshold ENEEEET NN

fracton O 10 20 30 40 50 60 70 80 90%




Detailed description of Fraction Skill Score (FSS)

(Roberts and Lean, 2008)

Step 5: Compute fraction skill score for all thresholds:

1 N
N,Z:l'( fest obs)

1 N
N Z fcst Z obs
=

FSS =1-

h.-]SEu“ o MSE (mref hll]SE'H'

FSSIH: — 1 (
hll]SEl_iz:pcrﬂ_‘--;_i - HI"ISEHH jref

Maximum estimation (low-skill reference) of MSE:

(Pfcst_Pobs)zz I:)fcst 2P P F)obsz - P

fcst® obs fcst

2+ I:)ob

32 = I\/ISEref



Detailed description of Fraction Skill Score (FSS)
(Roberts and Lean, 2008)

Step 6: Graphical presentation for each threshold and spatial scale:

Fractions skill score Froctions skill score

1275

845 0.38

Fss Fs5

325

—_ 1 E‘ 132 0,20
E e a5 =
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*Skill increases with spatial scale

*The smaller the displacement error the faster the skill increases with
increasing spatial scale

*\When the length of the moving window is smaller or equal the
displacment error there is no skill and FSS=0



Detailed description of Fraction Skill Score (FSS)
(Roberts and Lean, 2008)

Q: What happens if size of moving window is equal to domain size?
Q: What are useful (skillfull) numbers of FSS?

FSS
Pe rf.ect 1 Useful scales !  Too much smoothing asymptotes to value
skill : that depends on the
i frequency bias
' (1 if no bias)
0.5 + fo /2 f=n=n= £ommemeeeees 1”“”""“ target skill
i Present E
' output !
i onthese
f, i scales
No skill 0 L7~
grid scale entire domain

f,=domain obs fraction on the

Spatial scale
(length of neighbourhood squares)

grid scale (for f,=0.2(20%) -> target skill: FSS=0.5+0,2/2=0.6



Detailed description of Fraction Skill Score (FSS)
(Roberts and Lean, 2008)

Fracticns skill score

F=5

1.9
0.8
0.7
0.80
0%
.4
0.3
0.20

Spatial scale (km)

Q.27 0.28

G.ac 0.24 023 026 0.04

028 024 919 017 9.18 9.493

b1 0.2 D5 1 2 5 w20 50
Thrashold {rrm)



Scale separation methods
—>scale-dependent error

1. Which spatial scales are well represented and
which scales have error?

2. How does the skill depend on the precipitation
iIntensity?

NOTE: scale = single band spatial filter - features of different
scales - feedback on different physical processes and model
parameterizations

In the neighborhood based (fuzzy) verification, the scale is the
neighborhood size (low band pass filter): as the scale increases
the exact positioning requirememts are more and more relaxed



What is the difference between
neighborhood and scale separation
approaches?

* Neighborhood verification methods

> Get scale information by filtering out higher
resolution scales

* Scale separation methods
> Get scale information by isolating scales of interest

27



Nimrod case study: intense storm displaced

NIMROD Analysis 29/05/99 15:00 NIMROD Forecast T+3h 29/05/99 15:00
mm/h mm/h

128 128
64

Step 1. Gridded data, square domain with dimension 2"

It can be applied to any meteorological field ... however, it
was specifically designed for spatial precipitation forecasts ...



Step 2: Intensity: threshold to obtain binary
images (categorical approach)

Binary Analysis

F

Binary Error Image u=1mm/h
VA Y .

A e




Step 3: Scale 2 wavelet decomposition of binary

mean (1280 km)

error

~ Scale =8 (640 km)

P

-

Scale /=5 (80 km)

Scale I=2 (10 km)

>E,, MSE

30

u

- Scale I=7 (320 km)




Step 4: MSE skill score for each
threshold and scale component

MSE,, - MSE MSE

S S _ u,l,random _ 1 u,l

" T MSE MSE - 2el1- €)/L

u,l,best B u.,l,random

Sample climatology
1 (base rate)

G640
320 0
160
spatial gg T T T hinary
scale | . MSE skill
{km) 40 n S5 2 score
20 “'_‘;, .
1':' ..-". -..-l -3
-4

1321161814 1221 2 4 8 16

threshold {mmh)
31



Strenghts

Categorical approach - robust and resistant

Wavelets - cope with spatially discontinuous
fields characterized by the presence of few
sparse non-zero features

=>» suitable for spatial precipitation forecasts

Weaknesses

need gridded data on a square domain with
dimension 2"
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Figure 3: Intensity-scale skill score (ISS) for 6 h accumulated precipitation forecasts and up to 18 h lead time. Forecast ranges: 0-6 h,
6-12 h and 12-18 h; period: Jun-Nov 2007; x-axes: scale (1=8km, 2=16 km, 4=32km, 8=64 km, 16=128km, 32=256 km, 64=512 km);

-axes: precipitation thresholds in mm/6 h. .
TR Dorninger and Gorgas, 2012



Features-based methods
—> evaluate attributes of features



Feature-based approach (CRA)

Ebert and McBride, J. Hydrol., 2000

* Define entities using (user defined) threshold (Contiguous Rain
Areas)

* Horizontally translate the forecast until a pattern matching
criterion is met:

— minimum total squared error between forecast and observations
— maximum correlation

— maximum overlap

* The displacement is the vector difference between the original and
final locations of the forecast.

Observed Forecast

35



CRA error decomposition

Total mean squared error (MSE) before shifting

MSEtotaI = MSEdispIacement + MSEvolume + MSEDfoem

The displacement error is the difference between the mean square error before
and after shifting

MSEdispIacement = MSEtotaI - MSEshifted

The volume error is the bias in mean inte_nsit_y
MSE =(F - X)?

volume

where F and X are the mean forecast and observed values after shifting.

The pattern error, computed as a residual, accounts for differences in the fine
structure,

MSEpattern = MSEshifted - MSEvqume
36



Example: CRA verification of

precipitation forecast over USA

ST2mi_2005060100.g240.txt  precip. vel. 1.2757 km® wri2cops_2005053100.9240.124.txt  precip. vel. 1.5230 km?®
12 -108 -104 100 -96 —92 —B88 —B4 -B0 -112 -108 -104 -100 -96 -32 —B8 -84 -B80

hundredth i
[
L=

§ - —

1. What is the location error of the forecast?

2. How do the forecast and observed rain areas compare? Average values?
Maximum values?

3. How do the displacement, volume, and pattern errors contribute to the total
error?

37
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Fredicted rainfall (shifted)
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Analyzed rainfall

wrfd 24h fost 20050801 n=8433
(33.49°,—102.28°) to (37.77°,—96.00%)
Yerif, grid=0.042" CRA threshald=1.0 mm/h

Analysed  Ferecost

# gridpoints 21 mm/h 3304 3=37
Avarage rainrate {mmfh] Z.08 261
bMaximurm rain (mmfhj 119.63 3912
Rain velume (km?) 0.51 0.52

Displacement (EM} = [2.20°,1.92°] max.corr matching

Original Shifted
RS error (mm/d) 12.81 10,34
Carrelation cosfficient =067 0,305

Error Decomposition:
Oisplacernent error SE1R
Yolume error 0,008
Pattern error 6.3.9%



CRA Z2AD50E0
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Analyzed rainfall

wrfd 24h fost 20050801 n=11007
(37.52°,—101.29°) to (45.29%,—94.65%)
Yerif, grid=0.042" CRA threshald=1.0 mm/h

Analysed  Ferecost

# gridpoints 21 mm/h 4540 5839
Avarage rainrate {mmfh] 1.52 2.68
bMaximurm rain (mmfhj 21.08 Z7.69
Rain velume (km?) 0.28 046

Displacement (E,M} = [0.52°,—0.84%] moaox.corr matching

Original Shifted
RS error (mm/d) 5,11 4,65
Carrelation cosfficient —0.040 2,193

Error Decomposition:
Oisplacernent error 18.7%
Yolume error 4.9%
Pattern error TH.4%




Sensitivity to rain threshold

wrfZ2 fost ZO0E0801 hour O0—24 wrf2 fost 200508071 hour OO0—24
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Strengths of CRA

The entity-based CRA verification method has a number of
attractive features:

(a) It is intuitive, quantifying what we can see by eye

(b) it estimates the location error in the forecast,

(c) the total error can be decomposed into contributions
from location, intensity, and pattern,

(d) forecast events can be categorized as hits, misses, etc.
These descriptions could prove a useful tool for monitoring
forecast performance over time.

41



Weaknesses of CRA

There are also some drawbacks to this approach:

(a)Pattern matching: it must be possible to associate entities in the
forecast with entities in the observations. This means that the forecast
must be halfway decent. The verification results for a large number of
CRAs will be biased toward the "decent" forecasts, i.e., those for which
location and intensity errors could reliably be determined.

(b)The user must choose the pattern matching method as well as the
Isoline used to define the entities. The verification results will be
somewhat dependent on these choices (subjective).

(c)When a forecast and/or observed entity extends across the boundary
of the domain it is not possible to be sure whether the pattern match is
optimal. If the CRA has a reasonably large area still within the domain
then the probability of a good match is high. Ebert and McBride (2000)
suggest applying a minimum area criterion to address this issue.

42



Structure-Amplitude-Location (SAL)

Wernli et al., Mon. Wea. Rev., 2008

 Verification of rain forecasts Iin a defined domain
* No match of objects

SAL consists of three components:
- S structure
- A amplitude

- L location

Perfect forecast: S=A=L=0

43



Step 1: Definition of precipitation objects




S A L — defintion of the S-component

S= V{Rmod*) - V{Rcbs*}

V(...) denotes the mean (weighted) volume of all scaled precipitation objects
structure error in the chosen area

L
£l *
.......

precipitation

wfield®

scaling for each object: R* =R/ R, :R* € [Riprecn/Rmaxs --

—R

Imax

R* ]

Rthr‘eﬁh‘liR max

V(R)

=
-

X

V(R¥) X

L 1]



small intense vs. large weak objects

OBS

MOD

Rll.

®e

>
]

0

R

max

R* 1

V(R¥)

V(R*)

S>0

>




4.2.1 SAL

intense vs. weak objects with same size

_RITIEK
X
" Rmax
X
A<0
Dorninger WS 2015

Verifikation

R* 1

V(R*)

V(R*)

S

0




sensitivity to the object structure
R* 1 _

oBs —1-{ _ ..........

1
V(R*) X

R . R

MOD

~
\_/

)
(Y

V(R*) X V(RY) -
S>0 S <0

H




S A L — defintion of the A-component
A =D(Ryoq) - D(R,p) = 0

DER]:% > R,

(i, =g
R denotes precipitation
D(...) denotes the area mean in the chosen area
amplitude error

model observations

@ |1 ©




S A L —defintion of the L-component
L= |r{Rm0d) = r(Rcbs)l =0

r(...) denotes the precipitation center of mass in the chosen area
displacement error of the center of mass

model observations




S A L — defintion of the L-component
L= |r{Rmud) B r(Rchs)l >0

r(...) denotes the precipitation center of mass in the chosen area
displacement error of the center of mass

model observations




S A L — defintion of the L-component
L= |r{Rmod) B r(RchN =017

r(...) denotes the precipitation center of mass in the chosen area
displacement error of the center of mass

model observations

| (©)(©




S A L — defintion of the L-component
L= |r{Rmnd) - r(Rcbs)l + |d(rmud} - d(rrnbs)l >0

r(...) denotes the precipitation center of mass in the chosen area
d(...) mean (weighted) distance between objects- and area-center of mass
displacement error with impact of object distance to center of mass

model observations

d(Fmoa) = 0 d(rops) = (R(04)-dq *+ R(05)-d;)/R(04+0,)




S = (V(Roa") = V(Rgps™)) 1 0.5%(V(Riyoq*) + V(Rgps™))

mod obs mod

V(...) denotes the averaged volume of all scaled precipitation objects
scaled structure error in a catchment

Se[2..0,.. +2]
A= [D(Rmod} - D{Rnbs}} f U-S*ID(Rmud} + D{Rnhs}]

D(...) denotes the area mean in a catchment
scaled amplitude error
Ael[-2,...,0,...,+2]

L = (Ir(R,.og) - M(Rype)| + 2:]d(r, o) — d(ryp.)]) / dist,_. (area)

mod max

r(...) denotes the precipitation center of mass in a catchment

d(...) mean (weighted) distance between objects- and area-center of mass
scaled displacement error of the center of mass

L e[0,...,2]



L medium

(b)

-
rerw
E;_‘II ]
u:'l:-'l:'
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@
7
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S>>0
A=0
L medium

Davis et al. 2006



Q: Look at precip fields. What do you expect for S, Aand L?

OBS

FC

A: S=A=L=0; SAL is invariant against pure rotation.



precipitation amount is ...

A-component

precipitation objects are ...

S<0, A=0 S5=0, A=0

...too small and/or
too peaked

...foo large and/or
too flat

...overestimated ...overestimated

S5<0, A<0 S=>0, A<

...too small and/or
too peaked

...underestimated

...too largel and/or
too flat

...underestimated

S-component

\Y




SAL Examples
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Field deformation
— evaluate phase errors



DAS in a nutshell

* Displacement and Amplitude Score DAS

® constitutes a spatial measure belonging to the field
verification technique

® is based on an areal image matcher using classical optical
flow technique

® has two components: DIS and AMP (normalized with
characteristical values)

® is applied in both observation and forecast space (to
account for misses and false alarms)

® has been used in deterministic mode
® iscoded in python and freely available

(Keil and Craig, WAF 2009)



Optical flow algorithm: Pyramidal Matching

Project observed and simulated images to same grid

. Coarse-grain both images by averaging of 2F pixels onto one pixel
element

Compute a displacement vector field that minimizes the RMSE within
the range of +/- 2 pixel elements

Repeat step 2 at successively finer scales

Displacement vector for every pixel results from the sum over all scales

(Mannstein et al., 2002



Pyramidal Image Matching
Step 1: projection on same grid

observation

forecast




Pyramidal Image Matching
Step 2: coarse graining F=4

i o

observation forecast



Pyramidal Image Matching

Step 3. compute displacement vector by minimizing RMSE

i o

observation forecast



Pyramidal Image Matching

Step 3. compute displacement vector by minimizing RMSE

i o

observation forecast



Pyramidal Image Matching

Step 3. compute displacement vector by minimizing RMSE

forecast

observation



Pyramidal Image Matching
Step 4: cycle on finer scales using morphed image
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Pyramidal Image Matching
Step 4: cycle on finer scales using morphed image
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Pyramidal Image Matching
Step 5: sum over all scales

observation morphed forecast



Pyramidal Image Matching

Step 5

sum over all scales
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Pyramidal Image Matching
Step 5: sum over all scales

observation morphed forecast



Displacement error field DIS

DIS



Displacement error field DIS
and Amplitude error field AMP

DIS AMP



DAS field: combined DIS and AMP fields

DAS



Displacement and Amplitude Score DAS

DAS has two components:
1.displacement error (of observed and forecast imagery)

— 1
DIS =— ) DIS(x,y)
n -,

2.amplitude error (RMSE of observed and morphed

forecast imagery) 0 ne

AMP —D—ZAMP (X,) E

* DASIis applled in obsFrvatlon and for?cast space:
DIS = Ny, DIS, . + 1, DIS .,

ob

(Keil and Craig, WAF 2009)



Displacement and Amplitude Score DAS

* DAS shall be a single valued measure of forecast
quality:

» underlying principle: complete miss = 100% AMP
error

DAS — DIS . AMP
Dmax IO
. D..., : maximum search distance
. |, : characteristic intensity chosen to be typical

of amplitude of the observed features

(Keil and Craig, WAF 2009)



Conclusions

* What method should you use for spatial
verification?

— Depends what question(s) you would like to address

* Many spatial verification approaches
— Neighborhood - credit for "close" forecasts
— Scale separation - scale-dependent error
— Features-based - attributes of features

— Field deformation - phase and amplitude errors
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What method(s) could you use to
verify

Wind forecast (sea breeze)

—Ghgerved valid 20070814 18 CMC1 OBh fest valid 20070814 18

# ‘W J-‘_
o

t“iﬁ.} i

""aﬁ*ﬂfy
258022 "

" *»z*;j ,;..g;;

050

a

Neighborhood — credit for "close" forecasts
Scale separation — scale-dependent error
Features-based — attributes of features

Field deformation — phase and amplitude errors




What method(s) could you use to

Clouc?foreéa{\st

Observed Forecast
Nimrod cloud ) MES cloud fraction
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Neighborhood — credit for "close" forecasts
Scale separation — scale-dependent error
Features-based — attributes of features

Field deformation — phase and amplitude errors




What method(s) could you use to
verify

Mean sea level pressure forecast
' ; |5 F  bs2' "i' ig :' o

5-day forecast
Analysis

TUE 090602
TUE 0306021 200V120

Neighborhood — credit for "close" forecasts
Scale separation — scale-dependent error
Features-based — attributes of features

Field deformation — phase and amplitude errors




What method(s) could you use to
verify
Tropical cyclone forecast

Observed 3-day forecast
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Neighborhood — credit for "close" forecasts
Scale separation — scale-dependent error
Features-based — attributes of features

Field deformation — phase and amplitude errors
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