7th IVMW

Project #8: Verification of deterministic precipitation forecasts

Eun-Hee Lee, Ki-Byung Kim Korea Institute of Atmospheric Prediction Systems, Seoul

> Soo-Jin Sohn, Hyun-Ju Lee, Gayoung Kim APEC Climate Center, Pusan

Project #8

Verification of deterministic precipitation forecasts

Daily precipitation 3 day prediction data

- By the KIAPS Integrated Model (KIM)
 - : non-hydrostatic global NWP model on the cubed sphere
 - : Resolution ~25km
- JJA 2016, DJF 15/16

Observation

- Rain gauge data from 617 stations over Korean peninsula
- Daily accumulated from hourly prcp.

Verification

- Bilinear interpolation from model grid to obs. point
- Verified using contingency tables

JJA vs. DJF precipitation

Daily precipitation (all station averages)

JJA ~ rainy, prevailing persistent monsoonal rain period

, followed by rainy days due to synoptic front, convective systems DJF ~ relatively dry season, local rainy events..

Data

DJF15/16

0 50 100 150 200 250 300 obs For a longer lead time, Model tends to intensify rain system for some events

Data distribution & selected thresholds

Thresholds for contingency table verification

Heavy rainfall warning by KMA: 110 mm/12hr Lowest 0.5 mm, highest 100 mm/day [] 0.5, 2, 5, 10, 20, 30, 50, 100 mm/day

OBS 00-24h 24-48h 48-72h

Verification results (+48 h prediction)

Higher false alarm ratio for smaller thresholds in JJA

Higher hit rate for light rain for both JJA and DJF

Higher false alarm ratio for heavier rain thresholds in DJF

Verification results (+48 h prediction)

Over-predicted light rain & under-predicted heavier summer rain

DJF

Overall over-prediction for all precipitation ranges

Threshold = 50 mm/day				
1-day lead	OBS YES	OBS NO	Total	
FCST YES	5	6	11	
FCST NO	66	47462	47528	
Total	71	47468	47539	
Threshold = 50 mm/day				
2-day lead	OBS YES	OBS NO	Total	
FCST YES	35	68	103	
FCST NO	36	47400	47436	
Total	71	47468	47539	

Verification results (with lead times)

Better skill for higher thresholds in summer Better skill for lower thresholds in winter Prediction skill is better for winter? Decrease of skill with forecast lead time shown in most thresholds range

Verification results (various scores)

Various skill scores show different characteristics with thresholds ETS, HSS increases with thresholds but not in EDI Small samples size affects sharp decrease in certain skill score index like ETS, HSS

Summary

- Contingency table method is applied to verify deterministic precipitation forecasts against rain-gauge observation over Korea.
- Thresholds are selected in consideration with data distribution and extreme weather warning.
- Higher hit rate appears for light rain for both JJA and DJF.
- Higher false alarm ratio for smaller thresholds in JJA affects low skill score in summer, while higher false alarm ratio for heavier rain thresholds in DJF.
- Decrease of skill with forecast lead times is shown in most thresholds range.
- Small sample size affects certain skill scores.
- Extreme events are difficult to measure with this contingency table method.
- There are more issues about data quality control, grid-to-obs. interpolation, sample sizes, how to verify extreme events.

Verification results with lead times, DJF

ETS

10 20

30 50

0.5

0.4

0.3

0.2

0.1

 \circ

2 5

0.5

As forecast lead time is longer, POD decreasing False alarm increasing, BIAS increasing... Skills decreasing

till sample number issues...

threshold = 100 mm/day			
	OBS YES	OBS NO	Total
FCST YES	11	13	24
FCST NO	366	49353	49719
Total	377	49366	49743

Threshold = 50 mm/day				
	OBS YES	OBS NO	Total	
FCST YES	573	269	842	
FCST NO	789	48112	48901	
Total	1362	48381	49743	
Threshold = 30 mm/day				
	OBS YES	OBS NO	Total	
FCST YES	1295	447	1742	
FCST NO	1209	46792	48001	
Total	2504	47239	49743	

threshold = 100 mm/day			
	OBS YES	OBS NO	Total
FCST YES	0	0	0
FCST NO	9	47530	47539
Total	9	47530	47539

Threshold = 50 mm/day			
	OBS YES	OBS NO	Total
FCST YES	5	6	11
FCST NO	66	47462	47528
Total	71	47468	47539

Threshold = 30 mm/day			
	OBS YES	OBS NO	Total
FCST YES	93	31	124
FCST NO	229	47186	47415
Total	322	47217	47539

DJF15/16