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Talk outline: the quest for an informative metric 
(from Hausdorff to Baddeley, and beyond … )

Variable: RIPS vs IMS sea-ice extent (sea-ice concentration > 0.5)
Goal: analyze the metric behaviour. Once it is understood how 
the metric responds to different types or errors, then we can 
perform the verification of operational products ...



Context: Existing Verification Techniques
Traditional (point-by-point) methods:
1. graphical summary (scatter-plot, 

box-plot, quantile-plots).
2. Continuous scores (MSE, 

correlation). 
3. Categorical scores from 

contingency tables (FBI,HSS,PC).
4. Probabilistic verification (Brier, 

CRPS, rank histogram, reliability 
diagram).

Extreme dependency scores: Ferro 
and Stephenson 2011 (EDI,SEDI)

Spatial verification methods:

1. Scale-separation

2. Neighbourhood

3. Field-deformation

4. Feature-based

5. Distance metrics for binary images

There is no single technique 
which fully describes the complex
observation-forecast relationship!

Key factors: verification end-user and 
purpose; (statistical) characteristics of 
the variable & forecast; available obs.

● account for the coherent spatial 
structure (i.e. the intrinsic correlation 
between near-by grid-points) and the 
presence of features

● assess location and timing errors 
(separate from intensity error) in 
physical terms (e.g. km) – informative 
and meaningful verification

● account for small time-space 
uncertainties (avoid double-penalty)



Distance measures for binary images

➔ Account for distance 
between objects, similarity in 
shapes, ...

➔ Binary images: alternative 
metrics to be used along with 
traditional categorical scores 

Precipitation:
Gilleland et al.(2008), MWR 136
Gilleland et al (2011), W&F 26
Schwedler & Baldwin (2011), W&F 26
Venugopal et al. (2005), JGR-A 110
Zhu et al (2010), Atmos Res 102
Aghakouchak et al (2011), J.HydroMet 12
Brunet and Sills (2015), IEEE SPS 12
Sea-ice:
Heinrichs et al (2006), IEEE trans. GSRS 44
Dukhovskoy et al (2015), JGR-O 120
Hebert et al (2015), JGR-O 120 

● Average distance
● K-mean
● Fréchet distance
● Hausdorff metric

➔ Modified Hausdorff
➔ Partial Hausdorff

● Baddeley metric
● Pratts’ figure of merit

H ( A , B )=max {sup
a∈A

(d (a ,B ) ) , sup
b∈B

(d (b , A ) )}

A
B



Do we want a metric?
Note: in maths, metric = distance (error measure, the smaller the better)

Definition: a metric M between two sets of pixels A and B satisfies:
1. Positivity: M(A,B) ≥ 0
2. Separation: M(A,B) = 0 if and only if A = B
3. Symmetry: M(A,B) = M(B,A)
4. Triangle Inequality: M(A,C) +M(C,B) ≥ M(A,B)

Metrics are mathematically sound!    … but, are they useful?

The metrics' properties imply:
1. Measures the error (the smaller, the better).
2. Perfect score is achieved if and only if forecast = obs.
3. Result does not depend on order of comparison.
4. If M(O,F1) >> M(O,F2) it means that F2 is much better than F1, 
i.e. M(F1,F2) is significantly large (it separates forecasts according 
to their accuracy).



Hausdorff distance

The Hausdorff distance 
considers the max of the 
forward and backward 
distances:

Note: backward and forward 
distances are not symmetric: 
the “external” max enables 
symmetry!
The Hausdorff distance is a metric.

Hausdorff metric is sensitive to 
the distance between features

H ( A , B )=max {sup
a∈A

(d (a ,B ) ) , sup
b∈B

(d (b , A ) )}

A
B



Shortcomings of the Hausdorff distance

Because defined by using the max, the Hausdorff distance is  
overly sensitive to noise and outliers!
Example: spurious separated pixels associated with land-fast ice, 
which are generated by the RIPS forecast but are not visible in 
satellite products, lead to overly pessimistic / misleading scores.

A
B

A
B



Hausdorff distance, RIPS vs IMS

● Verification within RIPS products (bottom 3 lines) lead to better (smaller) 
scores than verification of RIPS products versus IMS obs (top 3 lines).

● RIPS analysis behaves as RIPS persistence (pers = 48h lag analysis)
● We focus on IMS obs versus RIPS forecast and IMS obs versus RIPS 

analysis: correlated behaviour → differences between RIPS forecast 
and IMS obs is directly inherited from RIPS analysis



Hausdorff distance, RIPS vs IMS

1st and 20th Sept: large error, prv > anl
Instead 20 better than 1, prv~anl20/2,1/3,10/3:

small constant error, prv = anl
Instead: 20/2 better, prv > anl



Hausdorff
1st and 20th Sept:

large error
prv > anl

Instead:
1st worse than 20th 

Sept, prv ~ anl



Partial and Modified 
Hausdorff Distances

The partial / modified Hausdorff distances consider a 
quantile / the mean of the forward and backward distances. 

Note:
The partial Hausdorff distance does not satisfy the separation 
property, nor the triangle inequality. The modified Hausdorff 
distance does not satisfy the triangle inequality:
The partial and modified Hausdorff distances are not metrics!



Dubuisson and Jain (1994) ”A Modified Hausdorff 
Distance for Object Matching” Proc. International Conference on 

Pattern Recognition, Jerusalem (Israel) page 566-568.

q
0.75

q
0.90

Haus Mod Haus

Test sensitivity to noise:
● Hausdorff is overly-sensitive
● PartHaus does not separate
● ModHaus desired response

Test distances for edge detection



Reminder: the backward and 
forward (mean) distances are 
not symmetric:

Differences are due to 
inclusion of sea-ice features, 
sea-ice extent over and 
underestimation.
Asymmetry is informative!

A

B

= 0

≠ 0

Modified Hausdorff, 
RIPS vs IMS



Mod Haus primary peak, 
fwd >> bkw:
RIPS forecast / analysis 
underestimate the sea-ice 
extent because melt ponds 
are assimilated as water

Mod Haus secondary peak, 
bkw >> fwd:
RIPS forecast overestimates the 
sea-ice extent



The Baddeley (1992) Delta (Δ) metric

Δ= 0.5625 Δ= 0.96875

hits = 9; false alarms = 11;  
misses = 7; nils = 37

The Baddeley 
Delta accounts 
for the similarity 
in shape



Baddeley Delta Metric, RIPS vs IMS

The Baddeley metric behaves similarly to the Hausdorff distance:
poor discriminatory power!!



Baddeley Delta Metric, RIPS vs IMS

The Baddeley metric behaves similarly to the Hausdorff distance:
poor discriminatory power!!

● Large misses in late August, early September
● Large false alarms in mid October
● 20th September better than 1st September

?

?

?



Shortcomings of the 
Baddeley Δ metric

The Baddeley metric is 
sensitive to the domain size: 
addition of zeros increases 
the distance!

Badd(A,B)=(mean
xєX

|d(x,A)-d(x,B)|p)1/p

Solution 1:
C = cutoff distance
If d(x,A)>C, then d(x,A)=C
If d(x,B)>C, then d(x,B)=C

Solution 2:
Evaluate the Baddeley metric 
over AUB rather than over the 
whole X.



Baddeley Δ metric evaluated on AUB

Badd AUB (A , B)=[
1

nAUB

(∑a∈A∖B
d (a , B)

p
+∑b∈B∖A

d (b , A)
p
)]

1 / p

The Baddeley metric evaluated on AUB is capable of discriminating poor 
vs better performance (20th September better than 1st September), and 
correctly diagnoses large misses in late August / early September and 
large false alarms in mid October: is BaddAUB a metric?



Distances in km
Technical but important detail: there is no 
need to interpolate forecast to obs grid!

Backward and forward mean 
distances (are not symmetric)

= 0

≠ 0

Modified 
Hausdorff Baddeley metric 

evaluated on AUB

A
B



Conclusions and future work

THANK YOU!
barbara.casati@canada.ca

Sea-ice verification by using the mean error distance, modified 
Hausdorff metric and Baddeley metric evaluated on AUB: 
● agree with human perception / eye-ball verification
● is informative on false-alarms / misses, 
● provides physical distances in km
● no interpolation needed
Hausdorff, Partial Hausdorff and Baddeley metric evaluated 
over the whole domain were found to be less informative and 
not robust.

Coming soon: apply the binary distance metrics to the ice-edge. 
Sensitivity to edges present in IMS and not in RIPS: separate 
verification of Arctic Ocean vs Canadian channels ...



Verification Resources
http://www.cawcr.gov.au/projects/verification/

Forecast verification FAQ: web-page maintained by the WMO Joint Working Group on 
Forecast Verification Research (JWGFVR). Includes verification basic concepts, overview 
traditional and spatial verification approaches, links to other verification pages and 
verification software, key verification references.

http://www.ral.ucar.edu/projects/icp

Web page of the Spatial Verification 
Inter-Comparison Project (ICP), which 
now is entering its second phase (MesoVIC). 
Includes an impressive list of references for 
spatial verification studies.
Review article: Gilleland, E., D. Ahijevych, 
B.G. Brown, B. Casati, and E.E. Ebert, 2009: 
Intercomparison of Spatial Forecast 
Verification Methods. Wea. Forecasting, 
24 (5), 1416 – 1430.

Thanks to Eric Gilleland
R package SpatialVx

http://www.ral.ucar.edu/projects/icp


  

Extras 1
spatial verification approaches



  

Spatial verification approaches
● account for coherent spatial structure and the presence of features
● provide information on error in physical terms (meaningful verification)
● assess location and timing errors (separate from intensity error)
● account for small time-space uncertainties (avoid double-penalty issue)

MesoVICT: inter-comparison of spatial verification methods  
http://www.ral.ucar.edu/projects/icp/

Feature-based: 
evaluate attributes 

of isolated features

Neighborhood: 
relax requirement 

of exact space-
time matching

Scale-separation: 
analyse scale-
dependency of 
forecast error

Field-deformation: 
use a vector and 
scalar field to morph 
forecast into obs

From Gilleland et al 2010



  

1. Scale-separation approaches

1. Decompose forecast and 
observation fields into the sum of 
spatial components on different 
scales (wavelets, Fourier, DCT)

2. Perform verification on different 
scale components, separately 
(cont. scores; categ. 
approaches; probability verif. 
scores)

from Jung and Leutbecher (2008)

Briggs and Levine (1997), wavelet cont (MSE, corr); 
Casati et al. (2004), Casati (2010), wavelet cat (HSS, FBI, scale structure) 
Zepeda-Arce et al. (2000), Harris et al. (2001), Tustison et al. (2003), scale invariants parameters; 
Casati and Wilson (2007), wavelet prob (BSS=BSSres-BSSrel, En2 bias, scale structure); 
Jung and Leutbecher (2008), spherical harmonics, prob (EPS spread-error, BSS, RPSS);
Denis et al. (2002,2003), De Elia et al. (2002), discrete cosine transform, taylor diag;
Livina et al (2008), wavelet coefficient score. De Sales and Xue (2010)

 Assess scale structure
 Bias, error and skill on different scales
 Scale dependency of forecast predictability (no-skill to skill transition scale)



  

1. Define neighbourhood of grid-points: relax requirements for exact 
positioning (mitigate double penalty: suitable for high resolution models); 
account for forecast and obs time-space uncertainty.

2. Perform verification over neighbourhoods of different sizes: verify 
deterministic forecast with probabilistic approach

t

t + 1

t - 1

Rainfall

F
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qu
en
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forecast

observation

Forecast value

F
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q
u

e
n

cy

forecast

observation

Yates (2006), upscaling, cont&cat scores; 
Tremblay et al. (1996), distance-dependent 
POD, POFD; Rezacova and Sokol (2005), 
rank RMSE; Roberts and Lean (2008) 
Fraction Skill Score; Theis et al (2005); 
pragmatical approach; Atger (2001), spatial 
multi-event ROC curve; Marsigli et al 
(2005, 2006) probabilistic approach.

random

2. Neighbourhood verification



  

Hoffmann et al (1995); Hoffman and 
Grassotti (1996), Nehrkorn et al. 
(2003); Brill (2002); Germann and 
Zawadzki (2002, 2004); Keil and 
Craig (2007, 2009) DAS; Marzbar 
and Sandgathe (2010) optical flow; 
Alexander et al (1999), Gilleland et 
al (2010) image warping

1.Use a vector (wind) field to 
deform the forecast field 
towards the obs field

2.Use an amplitude field to 
correct intensities of 
(deformed) forecast field to 
those of the obs field

● Vector and amplitude fields provide physically meaningful diagnostic information: 
feedback for data assimilation and now-casting. 

● Error decomposition is performed on different spectral components: directly 
inform about small scales uncertainty versus large scale errors.

3. Field-deformation approaches



4. Feature-based techniques

1. Identify and isolate (precipitation) features in forecast and observation fields 
(thresholding, image processing, composites, cluster analysis)

2. assess displacement and amount (extent and intensity) error for each pairs of 
obs and forecast features; identify and verify attributes of object pairs (e.g. 
intensity, area, centroid location); evaluate distance-based contingency tables 
and categorical scores; perform verification as function of feature size (scale); 
add time dimension for the assessement of the timing error of precipitation 
systems.

Observed Forecast

● Ebert and McBride (2000), Grams et al 
(2006), Ebert and Gallus (2009): CRA

● Davis, Brown, Bullok (2006) I and II, Davis 
et al (2009): MODE

● Wernli, Paulat, Frei (2008): SAL score
● Nachamkin (2004, 2005): composites
● Marzban and Sandgathe (2006): cluster
● Lack et al (2010): procrustes



  

Extras 2
distance to ice-edge



  

Ice-edge verification

forecast
analysis

Image is courtesy of 
Angela Cheng (CIS)

Evaluate the distance 
between forecast and obs 

ice-edge by using the
Baddeley metric and 
(partial and modified) 
Hausdorff distances

Meaningful verification: 
intuitive verification 

statistics, provides a 
distance in km!

No interpolation 
of the forecast 
nor of the obs 

is required



  

Distance to 
Ice Edge

Image and analysis 
by JF Lemieux 
(MRD-ECCC)

1.Thresholding: identify 
forecast and obs ice 
edges.

2.For each RIPS ice-
edge pixel (with dist 
larger that 50km from 
coast), evaluate the 
distance between ice 
edges.

3.Consider median, 
mean and max 
distance (similarly to 
partial, modified and 
Hausdorff, but solely 
forward distances).



  

Extras 3
RIPS vs IMS, 2011

Categorical Verification



  

Traditional categorical scores evaluated from 
contingency tables

Observed Forecast

Misses Hits

False 
Alarms

nilsmissesno

false alarmshitsyes

noyes

Observed

P
re

d
ic

te
d

HSS =

hits + corr.neg  – hits
random

 – nils
random

total  – hits
random

 – nils
random

PC =
hits + nils

total

FBI=hits+ false   alarms
hits+ misses



  
Note the range: sea-ice hits and correct water ~ 0.3; 

misses and false alarms ~ 0.03

Contingency table entries, RIPS vs IMS

Annual 
cycle

Annual 
cycle



  

Categorical scores, RIPS vs IMS

The annual cycles of hits and nils 
compensate each other. The PC is 
mostly affected by false alarms and 
misses (range ~ 0.03).

The HSS annual cycle is dominated 
by the hits, with influences of the 
false alarms and misses. 



  

Extras 4
RIPS vs IMS, 2011 annual cycle

15 Dec  – 1 April: small error, anl ~ prv
15 June, 1 Aug: medium error, anl ~ prv
17 Aug, 1 Sept: large misses, anl ~ prv
20 Sept verify better than 1 Sept
17 Oct, large false alarms, anl < prv

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error

20 Sept
medium error 15 Dec

small error

17 Aug, 1 Sept
large misses

17 Oct large 
false alarm



  

1 Feb, 1 March, 1 April
small error



  

1 Feb, 1 March, 1 April
small error



  

1 Feb, 1 March, 1 April
small error



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error

17 Aug, 1 Sept
large misses



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error

17 Aug, 1 Sept
large misses



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error

17 Aug, 1 Sept
large misses

20 Sept
medium 

error



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error

17 Aug, 1 Sept
large misses

20 Sept
medium 

error

17 Oct
 large 
false 
alarm



  

1 Feb, 1 March, 1 April
small error

15 June, 1 Aug
medium error

17 Aug, 1 Sept
large misses

20 Sept
medium 

error

15 Dec
small 
error

17 Oct
 large 
false 
alarm
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