TREND Forecast Verification in the MET Alliance

Guenter Mahringer, Austro Control, Aviation MET Service Linz, 4063 Hoersching, Austria. guenter.mahringer@austrocontrol.at

The MET Alliance is a group of national aeronautical MET service providers in Europe. Members: Austria, Belgium, Germany, France, Ireland, Luxembourg, Switzerland, the Netherlands. Observer (2017): Croatia A joint TAF Verification project is running since 2008. The TREND forecast verification was started in 2016 for six countries.

What is a TREND Forecast?

- ICAO Annex 3 (MET for aviation): TREND = Landing Forecast
- Valid 2 hours
- Forecast of significant changes
- Elements: visibility, cloud ceiling, wind and present weather
- Appended to actual METAR (every 30 mins) and SPECIAL Reports

Examples: Actual ... Forecast Wind (ddd ff max ffx): 12005KT ... TEMPO 24020G35KT Visibility (m): 0500 ... BECMG 4000

- Cloud ceiling (hft): OVC001 ... BECMG SCT020
- Present weather: -RA ... TEMPO FM1400 TSRA
- All in one: ... TEMPO FM1400 24020G35KT 2500 TSRA BKN012CB

How are TREND Forecasts verified

- VISIBILITY and CLOUD CEILING are verified using threshold values that are significant for flight operations.
- For PRESENT WEATHER, significant event classes thunderstorms,

The TRENDs are verified by investigating if significant changes were:

OBS reference: METARs

OBS and FCST not OBS but FCST **OBS but not FCST** not OBS, not FCST More than 1 forecast group may be used.

rain, snow, freezing precipitation and freezing fog are investigated.

- **SIGNIFICANT WIND CHANGES** are verified using criteria:
 - Direction change $\geq 60^{\circ}$ given that the speed is ≥ 10 KT
 - Speed change (increase or decrease) $\geq 10 \text{ KT}$
- Time groups (FM / TL / AT) and change types (BECMG, TEMPO) are not investigated.

Results

≡

Forecasters

want get feedback on the quality of their forecasts

Thresholds: OBS and FCST OBS but not FCST not OBS but FCST

Management wants to track quality over years.

It is important to use simple but proper scores – not so easy! Scores are influenced by climatology, quality of guidance, forecasting process, training ...

TREND Key Performance Indicators for the Met Alliance

					1 Y 1 G 4	Ch.				
Initial VIS Class Minima	m			Each TREND creates two entries						
FCST OBS	<150	150 - <350	350 - <600	SUM						
<150	0	0	0	0	In contingency tables:					
150 - <350	0	0	0	0	- For minimum OBS / FCST					
350 - <600	0	1	0	1						
SUM	0	1	0	1	- For maximum OBS / FCST					
	Initial VIS Class 350 Maxima			- <600m						
	F	CST OBS	350 - <600	600 - <800	800 - <1500	1500 - <3000	3000 - <5000	>=5000	SUM	
350 - <600		- <600								
	600 - <800 800 - <1500 1500 - <3000									
						1			1	
	3000	- <5000								
	>=	=5000								
	S	SUM				1			1	

The contingency tables are evaluated by threshold or event class: See example below: For all initial conditions < 3000m, the forecast performance for a VIS increase to \geq 3000m is shown.

Contingency t	Initial VIS able for "VIS	< 3000m: 6 improving t	o ≥ 3000m"	Score	≥3000m	Average for all thresholds	Colours		
FCST \ OBS	YES	NO	SUM				Bars ind		
YES	107 (a)	24 (b)	131 (a+b)	р (Е)	0,318				
NO	143 (c)	513 (d)	656 (c+d)	H = POD	0,428	0,519			
SUM	250 (a+c)	537 (b+d)	787 (n)	F	0,045				
Scores:				FAR	0,183	0,306			
Key performan	ce indicator	KPI = (PSS +	HSS) / 2	Bias	0,524		- Airpor		
PSS, HSS for all rele	evant thresholds	, improvement ar	nd deterioration	PSS	0,383	0,237	compa		
Peirce Skill Sco	ore PSS:	/ ((2+0)*(b+d)	`	HSS	0,439	0,274	- Point f		
Hojdko Skill So	a = b = c	((άτυ) (υτυ))	KPI	0,411	0,255			
HSS = (a+d - E)) / (n – E) wit	h n=a+b+	c + d and	p(E) when fcst	0,817		F araa		
$E = P\dot{C}$ by cha	ance = ((a+b	o)*(a+c) + (b+	d)*(c+d)) / n	p(E) when not fcst	0,218		- Forec		

These KPI scores are for April to September 2016 for 37 airports in six countries of the Met Alliance. are the same for all airports of one country. \diamond icate highest — median lowest scores.

First conclusions – what did we learn

rts have very different climatology, it is not really possible to are forecast quality

Contingency Table: Example for Present Weather

Onset of significant weather within 2 hours

	OBS	0	1	3	4	5	6	7	
FCST		Other	FZFG	RA	BL/DR SN	SN	FZ Prec	TS SQ	SUM
0	Other	15526	49	187	8	67	21	60	15918
1	FZFG	10	22	0	0	0	0	0	32
3	RA	279	0	151	0	7	0	18	455
4	BL/DR SN	0	0	0	0	0	0	0	0
5	SN	79	0	1	0	99	0	2	181
6	FZ Prec	23	0	0	0	0	2	0	25
7	TS SQ	6	0	12	0	2	0	37	57
	SUM	15923	71	351	8	175	23	117	16668

- forecasts of visibility, cloud ceiling, wind and present weather challenge even for the short period of 2 hours
- asters seem to be more focussed on catching the start of significant weather conditions than on forecasting their end
- Although the forecast period of 2 hours is fairly short, the focus is often on the change next to happen than on the whole period
- Training and qualification of personnel are very different
- Forecasting processes are set up very differently in the countries
- Large differences in scores between airports and countries: Many good scores, some problems