
Ensemble verification
Quantile score and decomposition

Generalization to CRPS

Ensemble verification:
Old scores, new perspectives

Sabrina Wahl, Petra Friederichs, Jan Keller

WMO Verification Workshop
Berlin, May 2017

Sabrina Wahl Ensemble verification



Ensemble verification
Quantile score and decomposition

Generalization to CRPS

ensemble forecast

probabilistic forecast

equally probable simulations 
of numerical model

pdf, cdf, mean, sd, 
quantiles, probabilities,…

translation, interpretation,
post-processing

➡ proper scoring rules:  
 CRPS, Brier score, quantile score,  
 logarithmic score, MSE, MAE, …

➡ calibration: rank (pit) histogram, beta score 
➡ discrimination: generalized discrimination score 
➡ sharpness: prediction interval 
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Fig 1. Schematic diagram showing the forecasting process. Time t i is
the initial time and time t f is the final forecast target time. The evolution
operator (N) in observation space is not known and so numerical
forecasting approximates it by mapping observations into model space,
evolving model states in time in model space via the model operator
(M), and then mapping model predictions from p-dimensional model
space back into q-dimensional observation space. Environmental
forecasting is particularly challenging because of the complexity and
high dimensionality of the model and observation spaces.

employed in the European Union (EU) Framework 5 project
DEMETER1 (http://www.ecmwf.int/research/demeter/). In Sec-
tion 4we show how forecast assimilation can be used to combine
and calibrate the multi-model predictions and we compare the
results to the simpler multi-model ensemble mean approach. In
Section 5 we conclude with a summary and suggestions for pos-
sible future directions.

2. A unified framework for forecasting

2.1. Forecasting process

Figure 1 shows a highly simplified (low-dimensional) schematic
diagram of the forecasting process. It is important to recognize
that observable variables (e.g. temperature at a particular loca-
tion) are not the samemathematical quantities asmodel grid point
variables. The state vector of the real atmosphere moves dynam-
ically around q-dimensional ‘observation state space’ whereas
the model state vector moves around p-dimensional ‘model state
space’. To initializemodelswith observations, information in ob-
servation state space has to be mapped into model state space
using a procedure known as ‘data assimilation’ (Daley, 1991;
Courtier, 1997; Bouttier and Courtier, 1999). A set of numerical
model predictions can then be made to produce an ensemble of
possible future model states – a procedure known as ‘ensemble

1Development of a EuropeanMulti-model Ensemble system for seasonal
to inTERannual prediction.

prediction’ (Palmer, 2000; Stephenson and Doblas-Reyes, 2000,
and references therein).

It is often falsely assumed that ensembles ofmodel predictions
are probability forecasts of the real world. Model variables are
generally neither representative nor unbiased estimates of site-
specific observable variables. Instead, model predictions should
be considered as proxy information that can be used to infer the
probability of future observables. The skill of forecasts depends
on their ability to discriminate between observable outcomes
(known as forecast resolution; Jolliffe and Stephenson, 2003)
rather than their ability to closely match observations. For ex-
ample, temperature forecasts that distinguish well between hot
and cold days but that are always 20◦C too warm are more skil-
ful than less biased forecasts that distinguish less well between
hot and cold days. To make inferences, one needs a probability
model (e.g. a regression model) that can give the probability of
observable quantities when provided with model forecast data.
There needs to be a procedure for mapping the model predicted
state back into observation space. To recognize its analogous
role to data assimilation, we will refer to this important final
step as ‘forecast assimilation’. In the past, forecast assimilation
has been addressed by a wide variety of approaches such as
bias-correction, statistical downscaling, model output statistics
(MOS), perfect prognosis, etc. (Wilks, 1995). As apparent in
Fig. 1, there is a strong duality between data assimilation and
forecast assimilation, which will be elaborated mathematically
in the following sections of this paper.

To summarize, three important steps are needed in order to
find the probability density function p(y f|y i) of a future observ-
able variable y f: data assimilation to find p(x i|y i), model ensem-
ble prediction to find p(x f|x i), and forecast assimilation to find
p(y f|x f). The desired probability density p(y f|y i) is obtained by
integrating over model states using a Monte Carlo approxima-
tion (a carefully chosen ensemble). For this to be a good approx-
imation, the initial ensemble states should be sampled from the
distribution p(x i|y i) – a condition not always satisfied in the de-
sign of current operational ensemble systems (Stephenson and
Doblas-Reyes, 2000).

2.2. Conditional probabilities and
Bayesian combination

Whereas data assimilation is concerned with how best to esti-
mate the probability density function of model state x i given
observational data y i, the dual problem of forecast assimila-
tion is concerned with how best to estimate the probability den-
sity of a future observable y f given model prediction data x f.
Both these activities involve the estimation of conditional prob-
abilities: p(x i|y i) for data assimilation and p(y f|x f) for fore-
cast assimilation. The resulting distributions are conditioned on
the available data such as observations for data assimilation
and model predictions for forecast assimilation. The identity
known as Bayes theorem shows how to obtain these conditional

Tellus 57A (2005), 3

Fig. 1 from Stephenson et al. (2005)
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multiple quantiles

Verification-framework for quantiles

score for quantile forecasts qτ when y is the event that materializes,
with τ ∈ (0, 1) the probability level

SQ(qτ , y) = ρτ (y − qτ ) =

{
| y − qτ | τ if y ≥ qτ
| y − qτ | (1− τ) if y < qτ

empirical quantile score from a set of N forecast-observation pairs

QS(τ) =
1
N

N∑
i=1

ρτ (yi − qτ,i )

decomposition of the quantile score (Bentzien and Friederichs, 2014)

QS(τ) =
1
N

N∑
i=1

ρτ (yi − qτ,i ) = UNC(τ)− RES(τ) + REL(τ)
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Quantile score and decomposition

Generalization to CRPS

single quantile
multiple quantiles

Reliability, perfect if y (k)
τ = q(k)

τ

REL =
1
N

K∑
k=1

∑
n∈Ik

[
ρτ
(

yn − q(k)
τ

)
− ρτ

(
yn − ȳ (k)

τ

)]

Resolution, good if y (k)
τ 6= ȳτ

RES =
1
N

K∑
k=1

∑
n∈Ik

[
ρτ (yn − ȳτ )− ρτ

(
yn − ȳ (k)

τ

)]

Uncertainty, from sample climatology ȳτ

UNC =
1
N

N∑
n=1

ρτ (yn − ȳτ )
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Generalization to CRPS

single quantile
multiple quantiles

Score for multiple quantiles qτ1 , ..., qτk with τ1, ..., τk ∈ (0, 1)

SQ(qτ1 , ..., qτk , y) =
k∑

i=1

ρτi (y − qτi )

interpret ensemble members e(1) ≤ e(2) ≤ ... ≤ e(M) as quantiles to the
probability levels τ1, ..., τM ∈ (0, 1)

QSENS =
M∑

j=1

QS(τj ) =
M∑

j=1

[
1
N

N∑
i=1

ρτj

(
yi − e(j)

i

)]

quantile score decomposition for ensemble

QSENS =
M∑

j=1

UNC(τj )−
M∑

j=1

RES(τj ) +
M∑

j=1

REL(τj )
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Generalization to CRPS

single quantile
multiple quantiles

QSENS =
M∑

j=1

UNC(τj )−
M∑

j=1

RES(τj ) +
M∑

j=1

REL(τj )

quantile reliability curves for each τj

graphical exploration of UNC(τ ),RES(τ ),REL(τ ) for τ = (τ1, ..., τM )

Example:
COSMO-DE-EPS 12-hourly precipitation forecasts for 365 days in 2011.
Number of observations N = 384 679 (from 1079 observing sites).
Number of ensemble members M = 20.
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Generalization to CRPS

single quantile
multiple quantiles

quantile reliability curves
should be close to diagonal

”spread” around the diagonal
indicates insufficient
ensemble spread

underestimation of higher
quantiles

overestimation of lower
quantiles

quantile forecast
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Generalization to CRPS

single quantile
multiple quantiles
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graphical exploration of UNC(τ ),RES(τ ),REL(τ )
optimal score:

QS = 0
REL = 0
RES = UNC

Sabrina Wahl Ensemble verification



Ensemble verification
Quantile score and decomposition

Generalization to CRPS

single quantile
multiple quantiles

quantile score decomposition

QS = UNC − RES + REL (1)

uncertainty is independent of forecasts, divide eq. (1) by UNC

QSS = 1− QS
UNC

=
RES
UNC

− REL
UNC

(2)

optimal values

QSS = 1 maximum improvement over climatology
RES/UNC = 1 maximum achievable resolution
REL/UNC = 0 perfect calibration
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Generalization to CRPS

single quantile
multiple quantiles

plot scaled resolution vs.
scaled reliability

contours show lines of
constant quantile skill score

combine three forecast
attributes in one diagram

compare different quantiles
and/or forecast models

rel/unc (optimum: 0)
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F(t) − H(t − y)
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y > t : F(t)

y < t : 1 − F(t)
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F
−1

(τ
)

QS

y < qτ : (1 − τ)(qτ − y)

y > qτ : τ(y − qτ)

SCRP =

∫
R

SB(1− F (u), y) du = 2
∫ 1

0
SQ(F−1(τ), y) dτ

see e.g. Gneiting and Raftery (2007)
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Generalization to CRPS

let e(1) ≤ e(2) ≤ ... ≤ e(M) be an ensemble forecast for Y

cumulative distribution function from ensemble

Fe(x) =
M∑

i=1

wi H(x − e(i))

weights wi > 0 and
∑M

i=1 wi = 1

Fe features exactly M jumps at the points x = e(i) with jump height wi

Evaluating Raw Ensembles with the CRPS 1613

k = 1, . . . , K, the ek are confined to the same range of values
as Y (all real numbers, a semi–infinite interval, or a finite
interval). The initial ordering of the ensemble members is
considered insignificant, and we therefore assume that the
ek are in increasing order. Using the ensemble, we can form
the following piecewise constant function

Ge(x) =
K∑

k=1

wkH(x − ek) (7)

with weights wk so that wk > 0 for all k, and
∑

k wk = 1.
Clearly, Ge comprises a piecewise constant cumulative
distribution function satisfying the regularity properties (1,
2). Furthermore, Ge features exactly K jumps (in the sense of
Eq. (3)) at the points x = ek with jump height wk. Therefore,
due to relation (3), P(Y = ek) = wk, while zero probability
is assigned to any set that does not contain an ensemble
member. Using the CRPS, we can evaluate Ge by S(Ge, Y),
which on average is equal to s(Ge, F).

The question arises as to how such an evaluation method
should be interpreted. More specifically, we have seen that
the minimum of s(G, F) over all cumulative distribution
functions G obtains if G = F. Clearly though, the cumulative
distribution functions Ge are of a very special type, and we
cannot, in general, expect that for a given F there is an e so
that Ge = F. There is no ‘correct’ ensemble; however, there
might be an ensemble ê which minimises the score s(Ge, F)
for a given cumulative distribution function F (and given
weights wk). Concerning such an optimal ensemble ê, one
might reasonably ask the following two questions:

1. The ensemble ê minimising the score s(Ge, F) will be
a function of F. What exactly does that function look
like?

2. Suppose that the ensemble ê minimises the score
s(Ge, F), where F is some distribution (e.g. our forecast
probability). How can we test the hypothesis that
the verification Y has distribution F, using only the
ensemble ê? For example, will the ensemble ê display
a flat rank histogram?

We will discuss these two questions.
To answer the first question, we have to determine

the minimum of s(Ge, F) with respect to e. Clearly, this
is equivalent to minimising d(Ge, F), for which we have
the expression (6). However, for illustrative purposes, we
will take another route, thereby revealing an interesting
connection to the well-known quantile score. We will first
present an illuminating expression for the score S(Ge, y) and
then compute the integral (5).

Substituting with Eq. (7) in Eq. (4), we obtain, after some
algebra which has been relegated to the Appendix, that we
may write S(Ge, y) as a weighted sum

S(Ge, y)= 2
∑

j

wj
{
αj(y − ej)+ + (1 − αj)(ej − y)+

}
, (8)

with αj =
∑

k≤j wk − (wj/2). Under the sum in (8), the
function σα(y, x) = α(y − x)+ + (1 − α)(x − y)+ appears;
this function is well known as the quantile score of level α
(Gneiting and Raftery, 2007; Friederichs and Hense, 2008).
Thus we see that applying the CRPS to the function Ge
amounts to applying the quantile score with certain level
αj to each individual ensemble member ej. As the name

suggests, the quantile score is often used to score quantile
estimates. This is motivated by the mathematical fact that
the expectation value of σα(Y , x) is minimal (as a function
of x) if F(x) = α holds, that is, if x is the α quantile of F. To
see this, write

∫ ∞

−∞
σα(y, x) dF(y)

=
∫ ∞

−∞
α(y − x) dF(y) +

∫ ∞

−∞
(x − y)+ dF(y)

= α(Y − x) +
∫ x

−∞
(x − y) dF(y)

= α(Y − x) +
∫ x

−∞
F(y) dy . (integration by parts)

Here, Y denotes the expectation value of Y . Further, we have
assumed (and will continue to do) that F has no jumps.
Setting the derivative of this relation with respect to x to
zero, we arrive at the necessary condition

α = F(x), (9)

that is, x has to be a quantile of F with level α. (If F has
a jump that leap-frogs α, then Eq. (9) has no solution; in
fact, the necessary condition reads a little differently in that
situation.)

If we integrate Eq. (8) over dF(y) and set the derivatives
with respect to the ej equal to zero, the same reasoning
applies, and we obtain the following necessary condition for
the optimal ensemble ê:

αj = F(̂ej) for all j = 1, . . . , K, (10)

with αj =
∑

k≤j

wk −
wj

2
. (11)

This result can be described graphically as in Figure 1.
On the ordinate, the interval [0, 1] (the ‘probability axis’)
is divided into K subintervals, with the kth interval having
length wk. Due to Eq. (11), αk is the midpoint of the kth
interval. The ensemble member êk obtains as the pre-image
of αk under F. Raw ensembles are usually evaluated with all
weights equal to 1/K, which gives αj = (j − 0.5)/K. Hence,
we can conclude that the optimal ensemble member êj is a
quantile of level (j − 0.5)/K. This concludes the discussion
of the first question.

Turning to the second question, our hypothesis that
Y has distribution F entails that F is reliable, which we

w3 a3 F

e2

w1 a1

a2w2

e1 e3

1

Figure 1. Illustration of the results in Eq. (11). The quantile levels αk
emerge as the midpoints of the intervals of width wk. The corresponding
ensemble members ek are the pre-images of the αk under the cumulative
distribution function F.

Copyright c⃝ 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 1611–1617 (2012)
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Fig. 1 from Broecker (2012)
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Generalization to CRPS

score for distribution Fe

SCRP(Fe, y) =

∫
[Fe(x) − H(x − y)] dx

is equivalent to sum of weighted quantile scores (Broecker, 2012)

SCRP(Fe, y) = 2
M∑

i=1

wi ρτi (y − e(i))

with decomposition

SCRP(Fe, y) = 2
M∑

i=1

wi UNC(τi )− 2
M∑

i=1

wi RES(τi ) + 2
M∑

i=1

wi REL(τi )
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Generalization to CRPS

contours show lines of
constant CRPS skill score

scaled resolution and
reliability: sum over all τ

compare different forecast
models and/or lead times

rel/unc (optimum: 0)
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Example:
Global EPS daily 12 UTC 500 hPa geopotenial forecasts for 30 days in 2012 (JJA).
Number of gridboxes: 720 × 361 (observations: ERA Interim).
Number of ensemble members: 20 to 50.
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Generalization to CRPS

Summary

SCRP(Fe, y) = 2
M∑

i=1

wi UNC(τi )− 2
M∑

i=1

wi RES(τi ) + 2
M∑

i=1

wi REL(τi )

Ensemble verification using quantiles can have different levels of
complexity

Representation of CRPS as weighted sum over quantile scores

1 CRPS single value (compare different models, lead times, ...)

2 CRPS attributes: skill, resolution and reliability as function of τ

3 quantile reliability curves

Application to empirical distribution as well as to parametric distribution
derived from statistical postprocessing
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Hyndman and Fan (1996): Sample quantiles in statistical packages

Definition 4: τj = j
M

Definition 5: τj = j−0.5
M

Definition 6: τj = j
M+1

Definition 7: τj = j−1
M−1

Definition 8: τj = j−1/3
M+1/3

Definition 9: τj = j−3/8
M+1/4

for j = 1, ...,M (number of ensemble members)
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Generalization to CRPS

rel/unc (optimum: 0)
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Example:
COSMO-DE-EPS daily 12 UTC temperature forecasts for 365 days in 2011.
Number of observations N = 174 603 (from 481 observing sites).
Number of ensemble members M = 20.
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