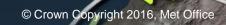


The generalized discrimination score (GDS): Connections, corrections and potential applications

Roger Harbord roger.harbord@metoffice.gov.uk

7th International Verification Methods Workshop

9 May 2017



×10:2

References and acknowledgements

• Simon Mason & Andreas Weigel

"A generic forecast verification framework for administrative purposes." *Monthly Weather Review* 2009; **137**(1): 331–349.

"The generalized discrimination score for ensemble forecasts." *Monthly Weather Review* 2011; **139**(9): 3069–3074.

Roger Newson

"Parameters behind 'nonparametric' statistics: Kendall's tau, Somers' *D* and median differences." *Stata Journal* 2002; 2(1): 45–64.

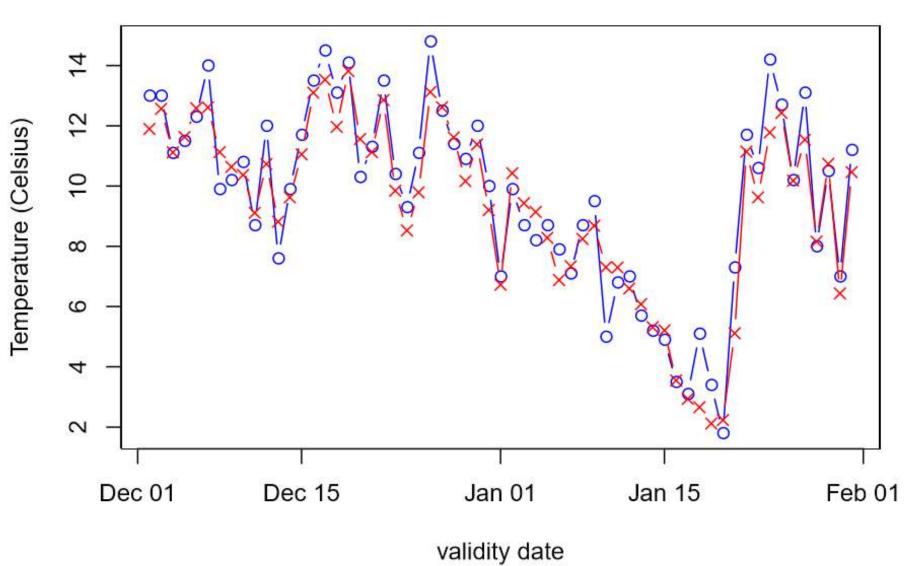
• ECMWF evaluation group

(especially Zied Ben Bouallegue & David Richardson)

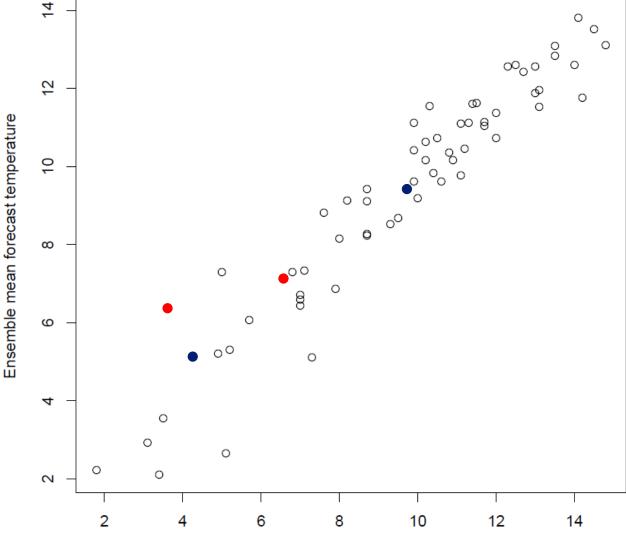
- Jonathan Flowerdew, Met Office
- Marion Mittermaier, Met Office

Midday temperature at Filton Airport, Bristol, UK 2 Dec 2015 – 31 Jan 2016

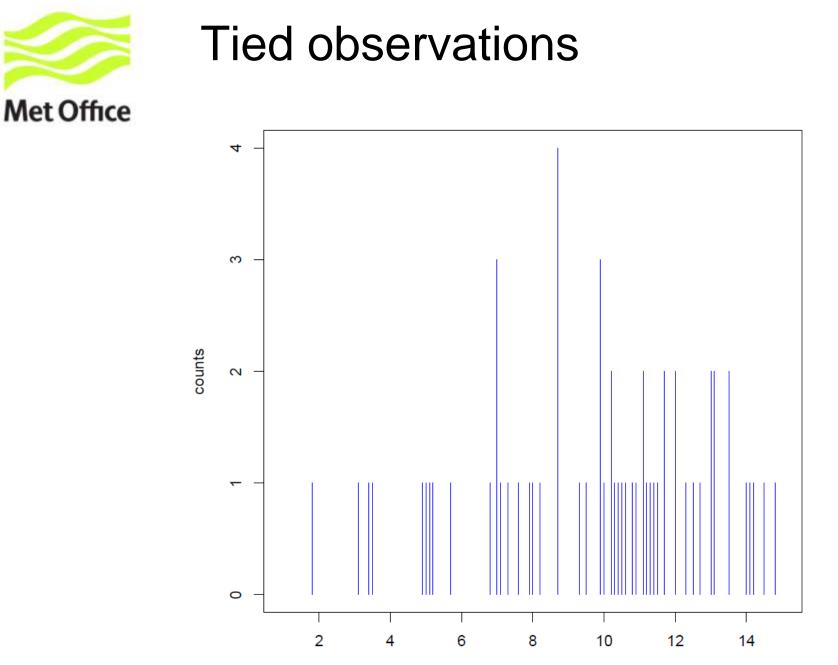
o observations x forecasts (T+24 ensemble mean)



Concordant and discordant pairs



Observed temperature



Observed temperature

2016, Met Office

Met Office GDS / 2AFC / Harrell's c range [0, 1]

GDS = Pr(pair concordant | obs unequal)(0.5 when both obs *and* fcsts are equal)

- D = Pr(pair concordant | obs unequal)
 - Pr(pair *dis*cordant | obs unequal)

$$D = 2c - 1$$

Computation of Somers' D

$$\operatorname{sign}(o_i - o_j) \times \operatorname{sign}(f_i - f_j),$$

averaged over all pairs (i, j) of data points with unequal observations $(o_i \neq o_j)$

where o_i is the observation and f_i is the forecast for data point *i*.

Temperature GDS = 0.92 (D = 0.83)

° 0,

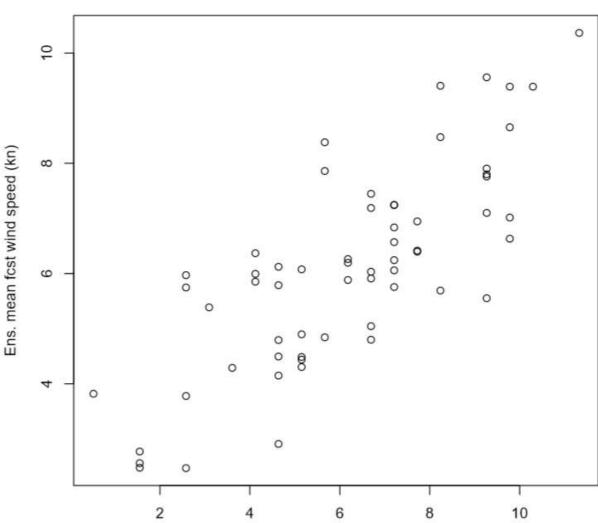
Ο

°°00 Ø Ø Ο Ensemble mean forecast temperature ∞ °°° Ο ଚ Ο ω Ο ശ Ο

www.metoffice.gov.uk

Observed temperature

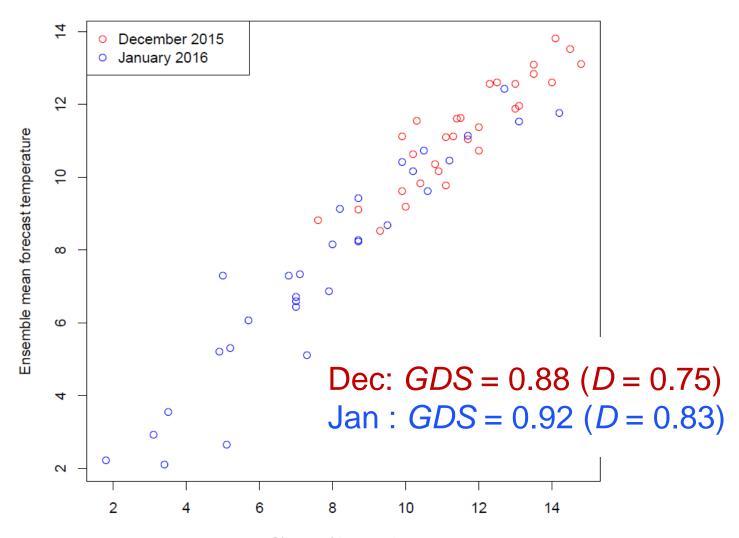
Wind speed: GDS = 0.81 (D = 0.62)



www.metoffice.gov.uk

Observed wind speed (kn)

"December 2015 – an exceptionally mild month in the UK" (Burt & Kendon, *Weather*, 2016)



Observed temperature

Dichotomous variables

Ο ∞_{0} Ο Ø Ø / 0⁰ Ensemble mean forecast temperature ∞ С Ο 0⁰ Ο ∞ Ο ဖ Ο

www.metoffice.gov.uk

Observed temperature

Dichotomous variables

• If the observations are dichotomous, but the forecasts are continuous,

GDS is the area under the ROC curve (AUC) Somers' *D* is the ROC skill score (ROCSS)

(Can compute using Mann-Whitney-Wilcoxon rank-sum statistic)

• If both observations *and* forecasts are dichotomous,

Somers' *D* is the Peirce skill score (hit rate – false alarm rate)

Extension to probabilistic forecasts (including ensemble forecasts)

- $sign(f_i f_j)$ is no longer meaningful.
- Instead of considering whether the point value of one forecast is greater or less than the value of a second forecast,
- consider the probability that a draw from the first forecast *distribution* is greater than or less than a draw from the second forecast distribution

$$\operatorname{sign}(\Pr[f_i > f_j] - \Pr[f_i < f_j])$$

Extension to probabilistic forecasts Mason & Weigel 2009 Appendix A

APPENDIX A

The 2AFC for Probabilistic Forecasts

Let $p_{0,i}(x)$ represent the probability density of the *i*th forecast for an event when an event did not occur, and let $p_{1,j}(x)$ be the *j*th forecast probability density when an event did occur. The quantities $P_{0,i}(x)$ and $P_{1,j}(x)$ are the corresponding cumulative distributions. Let $X_{0,i}$ be a random sample drawn from $p_{0,i}(x)$, and let $X_{1,j}$ be a random sample drawn from $p_{1,j}(x)$. The probability that $X_{1,j} > X_{0,j}$ [$p(X_{1,j} > X_{0,i})$] is given by

Extension to probabilistic forecasts Mason & Weigel 2009 Appendix A:

JANUARY 2009

MASON AN

$$p(X_{1,j} > X_{0,i}) = 1 - p(X_{1,j} \le X_{0,i})$$

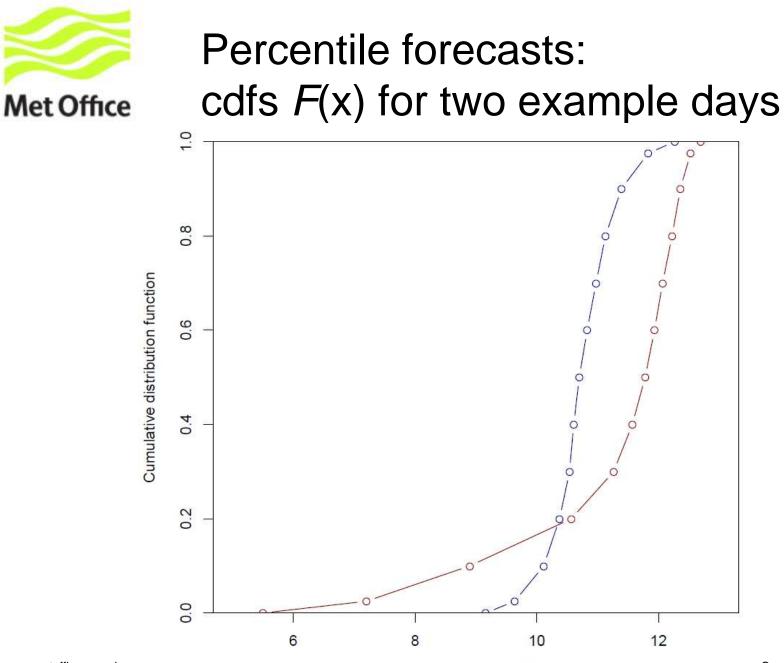
$$= 1 - \int_{-\infty}^{\infty} p_{0,i}(x) \int_{-\infty}^{x} p_{1,j}(y) \, dy \, dx$$

$$= 1 - \int_{-\infty}^{\infty} p_{0,i}(x) P_{1,j}(x) \, dx.$$
(A1)

Thus, $p(X_{1,j} > X_{0,i})$ is an obvious basis for a 2AFC score. However, one must consider that, by the nature of the 2AFC test, it is known a priori that the two observations can be discriminated. Therefore, $p(X_{1,j} > X_{0,i})$ needs to be conditioned on the prior knowledge that $X_{1,j} \neq X_{0,i}$. Using Bayes's theorem,

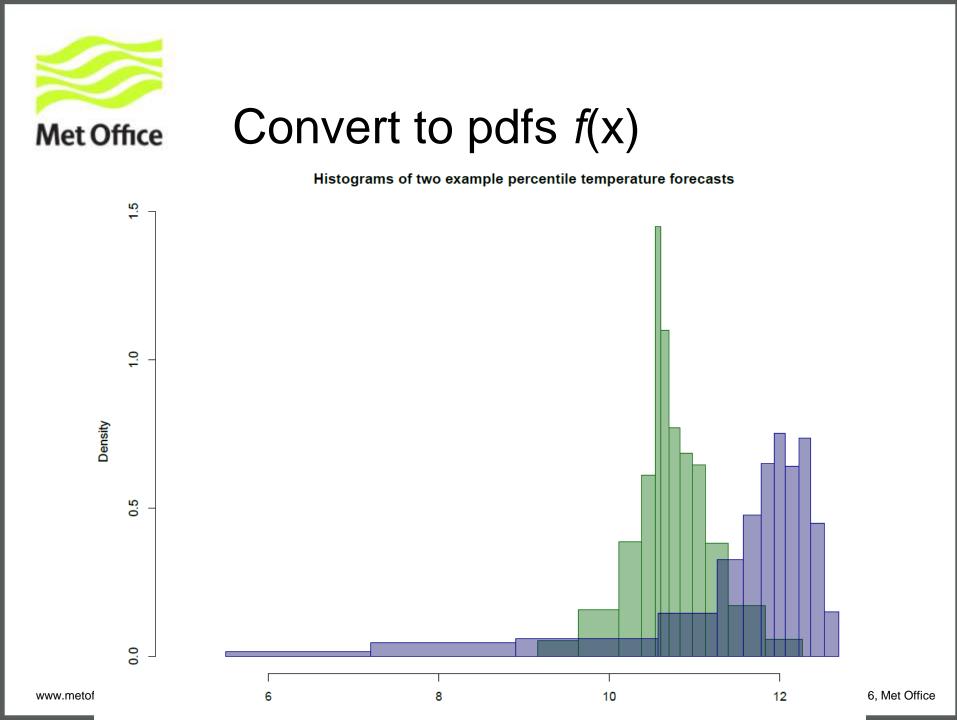
Assumption of independence of probability forecasts

- Not true for forecasts of nearby locations
- Not necessary for ensembles
 - can evaluate $\Pr[f_i > f_j]$ by in the usual way: evaluate $f_i > f_j$ (0/1) in each ensemble member and calculate the mean over ensemble members
- But the dependence information may be lost in post-processing
 - e.g. if we store only quantile-based (percentile) forecasts for each space-time forecast point



www.metoffice.gov.uk

Temperature (°C)



Results (values of *GDS*) Forecasts of temperature

		Observations	
Forecasts		Dichotomous	Continuous
Dichotomous	Ens. median > 10 °C	0.919	—
	50 th percentile > 10 °C	0.919	—
Continuous	Ensemble median	0.975	0.918
Continuous	50 th percentile 0.966	0.966	0.921
Probabilistic	Ensemble	0.975	0.917
	Percentile	0.969	0.924

Results (values of *GDS*) Forecasts of wind speed

		Observations	
Forecasts		Dichotomous	Continuous
Dichotomous	Ens. median > 6 m/s	0.805	—
	50 th percentile > 6 m/s	0.761	
Continuous	Ensemble median	0.873	0.807
Continuous	50 th percentile 0.842	0.780	
Probabilistic	Ensemble	0.878	0.810
	Percentile	0.843	0.783

Summary

- A rank-based measure of discrimination
- Insensitive to extremes
- Prone to spurious skill (like other discrimination measures)
- Not sensitive to spread of probabilistic forecasts
 - (probabilistic version is not 'proper')
- Is it be useful?
 - As a check that post-processing increases it, or at least does not decrease it?