Proper and equitable scores: a resolved dilemma

Zied Ben Bouallègue

7th International Verification Methods Workshop
Berlin, May 8-11, 2017
Definitions

In a nutshell:

• a **proper score** is based on a scoring rule consistent with the forecast interpretation
• an **equitable score** is a score for which all unskilful forecasts have the same expected score
Proper Scores for Probability Forecasts Can Never Be Equitable
Jolliffe and Stephenson, 2008

“It would be ideal to have a verification score that is both proper and equitable, but …”
Elementary scoring matrix

Scoring matrix for forecast z, verification y, event threshold θ, penalty asymmetry α:

\[
\begin{array}{c|cc}
z \geq \theta & y \geq \theta & 0 \\
1 & 0 & \alpha \\
0 & 1 - \alpha & 0 \\
\end{array}
\]

Asymmetry
- penalty α in case of a false alarm
- penalty $1 - \alpha$ in case of a missed event
Elementary score for probabilistic forecasts

• defined for a given threshold θ and a given asymmetry α:

$$s_{\alpha,\theta}(z, y) = \begin{cases}
1 - \alpha & \text{if} \quad y \geq \theta > z \\
\alpha & \text{if} \quad z \geq \theta > y \\
0 & \text{otherwise}
\end{cases}$$

• consistent scoring rule for **quantile forecasts** at probability level $1 - \alpha$

• block unit for the definition of **proper probabilistic scores**

(Ehm et al. 2016)

• elementary skill score: forecast **economic value** for a user with a cost/loss ratio α
Forecast Skill Card

Elementary skill score as a function of:

- probability level $1 - \alpha$
- event base rate π

Forecast Skill Card of 2m-temperature
Europe, July 2016, 12UTC, day 5
Summary scores

- Fixed event:
 integrate elementary (skill) score over a vertical line: Brier (skill) score
Summary scores

• Fixed event:
 integrate elementary (skill) score over a vertical line: **Brier (skill) score**

• Fixed probability level:
 integrate elementary (skill) score over a horizontal line: **Quantile (skill) score**
Summary scores

- Fixed event: integrate elementary (skill) score over a vertical line: **Brier (skill) score**
- Fixed probability level: integrate elementary (skill) score over a horizontal line: **Quantile (skill) score**
- All events and probability levels: integrate elementary (skill) score over the whole 2d card: **Continuous ranked prob. (skill) score**
Summary scores

• Fixed event: integrate elementary (skill) score over a vertical line: **Brier (skill) score**
• Fixed probability level: integrate elementary (skill) score over a horizontal line: **Quantile (skill) score**
• All events and probability levels: integrate elementary (skill) score over the whole 2d card: **Continuous ranked prob. (skill) score**

New approach:
• Fixed relationship between probability level and event base rate:

\[\alpha = \pi \]

integrate elementary (skill) score over the ascendant diagonal:

Diagonal (skill) score
Diagonal score(s)

Family of scores:

- Elementary diagonal scores:

 expected score $\propto 1 - (H - F)$ \hspace{1cm} (H= hit rate, F=false alarm rate)

- Ranked version : sum of elementary diagonal scores

- Continuous version : integral over all α

Proprieties:

- **Proper**: based on consistent scoring rules
- **Equitable**: same expected score when H=F
Synthetic dataset

Toy-model:

- Observation
 \[Y \mid \mu \sim \mathcal{N}(\mu, \sigma^2) \quad \text{with} \quad \mu \sim \mathcal{N}(0, 1 - \sigma^2) \]

- Forecast
 \[F \mid \mu \sim \mathcal{N}(\mu + b, \sigma^2) \quad \text{with} \quad \mu \sim \mathcal{N}(0, 1 - \sigma^2) \]

- \(b = \) forecast bias
- \(\sigma \) governs predictability (ex: small \(\sigma \), high signal-to-noise ratio)
 - \(\sigma = 0 \) perfect det. forecast
 - \(\sigma = 1 \) unconditional forecast

(Lerch et al. 2017)
Score properties

Scores as a function of the signal-to-noise ratio:

- Decomposition of the scores into UNC - RES + REL
- Discrimination (resolution): necessary and sufficient condition for skill in (b)

(a) norm. Brier score
(b) norm. diagonal score for $\pi = 2/3$

- unconditional forecast
- perfect forecast
- biased forecast (b=0.5)
- biased forecast (b=1)
Score properties

Scores as a function of the forecast bias:

- Score minimised when the forecast bias is zero (reliable forecast)
- Symmetry around unbiased forecast score and convergence towards unconditional forecast score in (b)

(a) norm. Brier score
(b) norm. diagonal score
for $\pi = 2/3$, $\sigma = 0.75$
The impenetrable hedge: a note on propriety, equitability and consistency
Jolliffe, 2008

“It is plausible that asymmetric scores may be required when cost and loss functions are taken into account, but to have highly **asymmetric scores determined solely by the base rate** seems less plausible”
Diagonal score interpretation

Diagonal scores:
• Assume a fixed relationship between event base rate and cost-loss ratio ($\alpha = \pi$)
 o user’s risk aversion increases with the intensity of the event under focus
 o appropriate for user with interest for high impact weather: rare events (small π) and potential high losses (small α)

• Focus on the maximum discriminative ability of the system
 (Manzato 2006)
2m-temperature

IFS ensemble performance as a function of the forecast lead time:

Skill scores based on
- Brier score
- Diagonal score
for $\pi=2/3$
Summary

- **Elementary score**: block score unit for the definition of consistent scoring rules

- **Forecast skill card**: elementary skill scores as the event and probability level varies

- **Diagonal score**: new summary score with *interesting* interpretations and properties
References

