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Scoring rules

Forecasts f1, . . . , fn
Outcomes x1, . . . , xn

Definition: A scoring rule,
s(f , x), gives a numerical score
to each forecast.

Example: s(f , x) = (f − x)2

We measure performance by
the mean score,

s̄ =
1
n

n∑
i=1

s(fi , xi).

Other measures can be
spuriously inflated by trends.

Example: correlation = .87
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Proper scoring rules

Let x1, x2, . . . have frequency
distribution p.

Suppose we issue the same
forecast, f , for all x1, x2, . . .

The best choice is f = p.

Definition: A scoring rule is
proper if the long-run mean
score is optimized by f = p.

Example: Let x ∈ {0, 1} and
f = Pr(x = 1). Then (f − x)2 is
proper; |f − x | is improper.

50th anniversary of ‘proper’!

Lots
Of
Ver if icat ion
Excitement
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Properties: interpretation

We can interpret proper scores as losses in decision problems.

Let L(a, x) be the loss following action a and outcome x .

Let af be the optimal (Bayes) action according to forecast f .

Then s(f , x) = L(af , x) is a proper scoring rule.

Example: Suppose that we lose L if we do not act and x = 1,
and lose C if we do act. If the cost-loss ratio, C/L, is uniformly
distributed on (0, 1) then our average loss from acting on f is
(f − x)2L/2 more than from acting on a perfect forecast.

A Brier score of 0.1 means that a group of decision makers with
a uniform distribution of cost-loss ratios will lose 5% of L more
than they would do with perfect forecasts.
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Properties: decomposition

Let pf be the distribution of outcomes following forecast f .

Definition: Forecasts are calibrated if pf = f for all f .

Definition: Forecasts are sharp if pf is concentrated for all f .

Proper scores measure calibration and sharpness:

s̄ = C + S,

where C is optimized when the forecasts are calibrated and S is
optimized when the forecasts are perfectly sharp.

Example: (f − x)2 = (f − pf )2 + pf (1 − pf )
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Properties: sensitivity to distance

Definition: A scoring rule is
local if it depends on only f (x).

Definition: A scoring rule is
distance-sensitive if the score
improves whenever we move
some probability nearer to x .

Local scores favour forecasts
with more probability at x .

Distance-sensitive scores
favour forecasts with more
probability near x .

Example: Logarithmic
(local), ranked probability
(distance-sensitive) and
quadratic (neither) scores
for three forecasts.

LS 1.61 1.61 1.61
RPS 0.64 0.80 1.28
QS 0.28 −0.04 0.28
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Properties: sensitivity in region of interest
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Properties: sensitivity to error

Suppose we issue the same
forecast, f , for x1, x2, . . .

Let x1, x2, . . . have frequency
distribution p.

The long-run mean score is
optimized by f = p but how
sensitive is it to f 6= p?

Example: Mean quadratic and
logarithmic scores for different
forecasts when p = 0.5. The
log score is more sensitive to
large errors and (on this scale)
less sensitive to small errors.
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Properties: sensitivity to climatology

Let x1, x2, . . . have frequency
distribution (climatology) p.

Suppose we issue climatology,
f = p, for all x1, x2, . . .

How does the long-run mean
score vary with climatology?

Symmetric scoring rules give
their worst scores when
climatology is uniform.

Asymmetric proper scoring
rules can be designed so that
all climatologies score zero.

Example: Mean logarithmic
and quadratic scores (scaled)
for different climatologies.
Both scoring rules give their
worst scores when p = 0.5.
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Inference
Assume s(f1, x1), . . . , s(fm, xm) are independent draws from a
population with mean µ.

Assume s(g1, y1), . . . , s(gn, yn) are independent draws from a
population with mean µ + δ.

If the outcomes, x1, . . . , xm and y1, . . . , yn, are from the same
population or are identical (x = y ) then we may compare the
two forecasters using standard two-sample inference for δ.

If the outcomes are from different populations then we cannot
compare the forecasters: we don’t know how well each would
have forecast the other’s outcomes.

We can compare their performances, though, especially using
measures (e.g. ROC curves) that don’t depend on climatology.
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Some suggestions

Rank forecasts with proper scores.

Interpret scores using decision theory.

Measure calibration and sharpness by decomposing scores.

Use distance-sensitive or local scores if ‘distance’ has meaning.

Stress regions of interest by weighting scores.

Choose scores that represent relevant decision problems.

Use asymmetric scores to award zero to reference forecasts.

Understand the sensitivities of scores to different errors.

Beware that some scores are costly to compute.
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Extensions: ensembles and probability intervals

Let x1, x2, . . . have distribution p and suppose that we sample
ensembles, w1, w2, . . ., from one distribution, f , for all x1, x2, . . .

Definition: A scoring rule, s(w , x), is fair if the long-run mean
score is optimized when f = p.

Example: Let x ∈ {0, 1} and w̄ be the mean of an ensemble of
size m > 1. Then (w̄ − x)2 − w̄(1 − w̄)/(m − 1) is fair.

Let forecasts be probability intervals (e.g. 0-5%, 5-15%, . . . )
and suppose we issue the same interval, I, for all x1, x2, . . .

Definition: A scoring rule, s(I, x), is interval-proper if the
long-run mean score is optimized when I contains p.

Example: Let intervals Ik = [ck−1, ck ] partition [0, 1]. Then
s(Ik , x) = (ck−1 − x)(ck − x) is interval-proper.
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Extensions: observation error

x = true outcome
y = observed outcome
f = probability forecast for x

We would like to use s0(f , x)
for a proper scoring rule s0 but
we don’t know x .

Definition: A scoring rule, s, is error-corrected if the long-run
mean of s(f , y) equals the long-run mean of s0(f , x).

The error-corrected score is an unbiased estimate of the score
that would be awarded by s0 if we knew the true outcome.

Example: Let x , y ∈ {0, 1} and f ∈ [0, 1] with misclassification
probabilities rx = Pr(y 6= x | x). If r0 + r1 6= 1 then

s(f , y) = s0(f , y) +
ry{s0(f , y)− s0(f , 1 − y)}

1 − r0 − r1
.
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How can we get more from scoring rules?

More guidance on how to design scoring rules.

More guidance on how to interpret scores with decision theory.

More ways to interpret scores graphically.

Effective decompositions for calibration and sharpness.

Relate scores to meteorological errors/biases.

Extensions to time series, fields and multivariate features.

Better inference for rare events.

Formal analysis of decisions to update operational models.
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