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Motivation

http://www.spectator.co.uk/features/8959941/whats-wrong-with-the-met-office/

http://www.spectator.co.uk/features/8959941/whats-wrong-with-the-met-office/
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Probabilistic vs. point forecasts
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Evaluation of probabilistic forecasts: Proper scoring rules

A proper scoring rule is any function

S(F , y)

such that
EY∼GS(G ,Y ) ≤ EY∼GS(F ,Y )

for all F ,G ∈ F .

We consider scores to be negatively oriented penalties that
forecasters aim to minimize.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction,

and estimation. Journal of the American Statistical Association, 102, 359–378.



Examples

Popular examples of proper scoring rules include

I the logarithmic score

LogS(F , y) = − log(f (y)),

where f is the density of F ,

I the continuous ranked probability score

CRPS(F , y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2dz ,

where the probabilistic forecast F is represented as a CDF.



Advertisement

R package scoringRules (joint work with Alexander Jordan and
Fabian Krüger)

I implementations of popular proper scoring rules for ensemble
forecasts and (many previously unavailable) parametric
distributions

I implementations of multivariate scoring rules

I computationally efficient, statistically principled default
choices

Available on CRAN, development version at
https://github.com/FK83/scoringRules.

https://github.com/FK83/scoringRules
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Media attention often exclusively falls on prediction
performance in the case of extreme events

http://www.theguardian.com/business/2009/jan/24/nouriel-roubini-credit-crunch

http://www.theguardian.com/business/2009/jan/24/nouriel-roubini-credit-crunch


Toy example

We compare Alice’s and Bob’s forecasts for Y ∼ N (0, 1),

FAlice = N (0, 1), FBob = N (4, 1)

Based on all 10 000 replicates,

Forecaster CRPS LogS

Alice 0.56 1.42
Bob 3.53 9.36

When the evaluation is restricted to the largest ten observations,

Forecaster R-CRPS R-LogS

Alice 2.70 6.29
Bob 0.46 1.21



Verifying only the extremes erases propriety

Some econometric papers use the restricted logarithmic score

R-LogS≥r (F , y) = −1{y ≥ r} log f (y).

However, if h(x) > f (x) for all x ≥ r ,
then

ER-LogS≥r (H,Y ) < ER-LogS≥r (F ,Y )

independently of the true density. −2 0 2 4
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In fact, if the forecaster’s belief is F , her best prediction under
R-LogS≥r is

f ∗(z) =
1(z ≥ r)f (z)∫∞

r f (x)dx
.



The forecaster’s dilemma

Given any (non-trivial) proper scoring rule S and any non-constant
weight function w , any scoring rule of the form

S∗(F , y) = w(y)S(F , y)

is improper.

Forecaster’s dilemma: Forecast evaluation based on a subset of
extreme observations only corresponds to the use of an improper
scoring rule and is bound to discredit skillful forecasters.
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Proper weighted scoring rules I

Proper weighted scoring rules provide suitable alternatives.

Gneiting and Ranjan (2011) propose the threshold-weighted CRPS

twCRPS(F , y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2w(z) dz

w(z) is a weight function on the real line.

Weighted versions can also be constructed for the logarithmic score
(Diks, Panchenko, and van Dijk, 2011).

Gneiting, T. and Ranjan, R. (2011) Comparing density forecasts using

threshold- and quantile-weighted scoring rules. Journal of Business and

Economic Statistics, 29, 411–422.



Role of the weight function

The weight function w can be tailored to the situation of interest.

For example, if interest focuses on the predictive performance in
the right tail,

windicator(z) = 1{z ≥ r}, or

wGaussian(z) = Φ(z |µr , σ2r )

Choices for the parameters r , µr , σr can be motivated and justified
by applications at hand.



Toy example revisited

Recall Alice’s and Bob’s forecasts for Y ∼ N (0, 1),

FAlice = N (0, 1), FBob = N (4, 1)

based on all 10 000 replicates

Forecaster CRPS LogS

Alice 0.56 1.42
Bob 3.53 9.36

based the largest 10 observations

Forecaster R-CRPS R-LogS

Alice 2.70 6.29
Bob 0.46 1.21

threshold-weighted CRPS, with indicator weight w(z) = 1{z ≥ 2} and

Gaussian weight w(z) = Φ(z |µr = 2, σ = 1)

Forecaster windicator wGaussian

Alice 0.076 0.129
Bob 2.355 2.255



Case study: Probabilistic wind speed forecasting

I Forecasts and observations of daily
maximum wind speed

I Prediction horizon of 1-day ahead

I 228 observation stations over Germany

I Evaluation period: May 2010 – April 2011

I 90% of observations ∈ [2.7m
s , 11.7m

s ]
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Probabilistic forecasts:

I ECMWF ensemble (maximum over forecast period)

I Bob: for every forecast case,

F = N (15, 1)



Case study: Results

based on all observations

Forecaster CRPS

ECMWF 1.26
Bob 8.49

based on observations > 14

Forecaster R-CRPS

ECMWF 6.87
Bob 1.80

threshold-weighted CRPS, with indicator weight w(z) = 1{z ≥ 14} and

Gaussian weight w(z) = Φ(z |µr = 14, σ = 1)

Forecaster windicator wGaussian

ECMWF 0.059 0.063
Bob 0.653 0.761

Post-processing models and improvements for high wind speeds:

Lerch, S. and Thorarinsdottir, T.L. (2013) Comparison of non-homogeneous

regression models for probabilistic wind speed forecasting. Tellus A, 65:

21206.



Summary and conclusions

I Forecaster’s dilemma: Verification on extreme events only is
bound to discredit skillful forecasters.

I The only remedy is to consider all available cases when
evaluating predictive performance.

I Proper weighted scoring rules emphasize specific regions of
interest, such as tails, and facilitate interpretation, while
avoiding the forecaster’s dilemma.

I In particular, the weighted versions of the CRPS share (almost
all of) the desirable properties of the unweighted CRPS.

Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F. and Gneiting, T. (2017)
Forecaster’s dilemma: Extreme events and forecast evaluation.
Statistical Science, 32, 106–127.

Thank you for your attention!


