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Introduction Weighted CRPS EVT and CRPS distribution Case study
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Extremes : difficult to forecast... and to verify
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Introduction Weighted CRPS EVT and CRPS distribution Case study
' Verification & extremes : a challenging issue

» Verification habits
» Set of observed events and associated forecasts
» Standard verification methods applied on the set
» But for extremes

» Small number of observed events
» Standard verification methods degenerate
» Models (even ensemble forecasts) are usually quite bad

» Misguided inferences/assessments : The forecaster’s dilemma
(see Sebastian’s talk)
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' Introduction Weighted CRPS EVT and CRPS distribution Case study

Weighted CRPS for extremes
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Introduction Weighted CRPS EVT and CRPS distribution Case study
' Proper scoring rules
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Introduction Weighted CRPS EVT and CRPS distribution Case study
Proper scoring rules

» Y : observation with CDF G (unknown...)
» X forecast with CDF F
» 5(.,.) function of F x Rin R

@

METEO
Maxime Taillardat 4/16 FRANCE



Introduction Weighted CRPS EVT and CRPS distribution Case study
Proper scoring rules

» Y : observation with CDF G (unknown...)
» X forecast with CDF F
» 5(.,.) function of F x Rin R

s is a proper scoring rule (Murphy 1968 ; Gneiting 2007)

Ey(s(G, Y)) < Ey(s(F,Y)) (1)
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' Introduction Weighted CRPS  EVT and CRPS distribution ~ Case study

» A widely used proper score : the CRPS (Murphy 1969 ; Gneiting
and Raftery 2007 ; Naveau et al. 2015 ; Taillardat et al. 2016)

CRPS(F,y) = /Oo (F(x) = 1{x > y})?dx

]
= EelX -yl - SEFX - X|

= y+2[F(Y)EF(X — y|X > y) —Er(XF(X))]
= BelX - y| + Er(X) - 2EF(XF(X))
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Introduction Weighted CRPS EVT and CRPS distribution Case study
' ... And its weighted derivation

» A weighted score : the wCRPS (Gneiting and Ranjan 2012)

wCRPS(F,y) = /oo w(x)(F(x) —1{x > y})2 dx

= BRIW(X) ~ W()| — JEAAW(X) ~ WX

W(y) +2 [FEF(W(X) = W)IX > y) = Ef(W(X)F(X)) ]
Ef|W(X) - W(y)| + Ef(W(X)) — 2BR(W(X)F(X))

where W= [w and [wf<o

» The weight function cannot depend on the observation : it leads
to improper scores.
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Introduction Weighted CRPS EVT and CRPS distribution Case study
' (Weighted) CRPS embarassing properties

Wwq(x) = log(x)1{x > q}

This weight function is closely linked to the Hill’s tail-index estimator.
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Introduction Weighted CRPS EVT and CRPS distribution Case study

' (Weighted) CRPS embarassing properties

This weight function appears suitable for extremes but...

Wq(x) = log(x)1{x > q}

WCRPS (plain) and CRPS(dotted) for GPDs
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Introduction Weighted CRPS EVT and CRPS distribution Case study
' (Weighted) CRPS embarassing properties Il

» Tail equivalence
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Introduction Weighted CRPS EVT and CRPS distribution Case study
' (Weighted) CRPS embarassing properties Il

» Tail equivalence

E
lim ﬁ =ce(0,00)
X—00 G(X)
» For any given € > 0, it is always possible to construct a CDF F
that is not tail equivalent to G and such that

IEy(WCRPS(G, Y)) — Ey(WCRPS(F, Y))| < ¢
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Weighted CRPS
' Paradigm of verification for extremes ?

“The paradigm of maximizing the sharpness of the predictive
distributions subject to calibration” (Gneiting et al. 2006)

“Extreme events are often the result of some extreme atmospheric
conditions and combinations : Most of the time just few members in
the ensemble leads to such events. We could just look at the
information brought by the forecast. But how ?”

» Consequence : we do not care about reliability here ! (More in
“detection” logic)

» An example : The ROC Curve

» Different criterion : Be skillful for extremes subject to a good
overall performance.

» Question : How combining an extreme verification tool with the
CRPS?
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' Introduction  Weighted CRPS  EVT and CRPS distribution Case study

Extreme Value Theory and CRPS distribution
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Introduction  Weighted CRPS  EVT and CRPS distribution Case study
' How using extreme value theory with CRPS ?

The classical Continuous Ranked Probability Score (CRPS) can be
written as :

CRPS(F,y) = E|X — y| + E(X) — 2E(XF(X))
And for large y it is possible to show that :
CRPS(F,y) ~ y — 2E(XF (X))

Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw Y with CDF G, the
survival distribution of CRPS(F, Y) can be approximated by a GPD

with parameters og and &g :

P(CRPS(F,Y) > t + u| CRPS(F, Y) > u) ~ GPy(0g, £a)
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Introduction  Weighted CRPS  EVT and CRPS distribution Case study
' How using extreme value theory with CRPS ?

The classical Continuous Ranked Probability Score (CRPS) can be
written as :

CRPS(F,y) = E|X — y| + E(X) — 2E(XF(X))
And for large y it is possible to show that :
CRPS(F,y) ~ y — 2E(XF (X))

Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw Y with CDF G, the
survival distribution of CRPS(F, Y) can be approximated by a GPD

with parameters og and &g :

P(CRPS(F,Y) > t+u|Y > u) ~ GPy(0g,&a)

Under assumptions on G (satisfied for extremes)
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Introduction  Weighted CRPS  EVT and CRPS distribution Case study
And so what ?

Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw Y with CDF G, the
survival distribution of CRPS(F, Y) can be approximated by a GPD

with parameters og and &g :

P(CRPS(F,Y) > t+u|Y > u) ~ GPy (06, &a)

Under assumptions on G (satisfied for extremes)

» Are we trapped ? Parameters are the same whatever the forecast
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Introduction  Weighted CRPS  EVT and CRPS distribution Case study
And so what ?

Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw Y with CDF G, the
survival distribution of CRPS(F, Y) can be approximated by a GPD

with parameters og and &g :

P(CRPS(F,Y) > t+u|Y > u) ~ GPy (06, &a)

Under assumptions on G (satisfied for extremes)

» Are we trapped ? Parameters are the same whatever the forecast
» Crucial (and unrealistic) assumption here : F and G are
independent
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Introduction  Weighted CRPS  EVT and CRPS distribution Case study
And so what ?

» Crucial (and unrealistic) assumption here : F and G are
independent

» In practice, the convergence to these parameters is driven by the
skill of ensembles for extreme events

GPD shape parameter estimation

— shape of Pareto observation G

— shape of CRPS with F and G independent

— shape of CRPS with F and G slightly dependent
— shape of CRPS with F and G highly dependent
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Introduction Weighted CRPS EVT and CRPS distribution Case study

Plan

A relevant case study
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Introduction Weighted CRPS EVT and CRPS distribution Case study

Post-processing of 6-h rainfall for extremes

ROC Curve (RR6>15mm)
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Introduction Weighted CRPS EVT and CRPS distribution Case study

Post-processing of 6-h rainfall for extremes

X CRPS et obs. des GPD sigma CRPS et obs. des GPD
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Estimations of GPD parameters are highly correlated
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Introduction Weighted CRPS EVT and CRPS distribution Case study
Conclusions

» Some properties of (w)CRPS are debated... And also used
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Introduction Weighted CRPS EVT and CRPS distribution Case study
Conclusions

» Some properties of (w)CRPS are debated... And also used

» A different criterion for extreme verification is established
Be skillful for extremes subject to a good overall
performance
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Introduction Weighted CRPS EVT and CRPS distribution Case study
Conclusions

» Some properties of (w)CRPS are debated... And also used
» A different criterion for extreme verification is established
Be skillful for extremes subject to a good overall

performance
» A new way to verify ensemble (only ?) forecasts for extremes is

shown

GPD shape parameter estimation

- shape of Pareto observation G
— shape of CRPS wilh F and G highly dependent
— shapo of GRS wilh determinisic forecast coming from F
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Introduction Weighted CRPS EVT and CRPS distribution Case study
Conclusions

» Some properties of (w)CRPS are debated... And also used

» A different criterion for extreme verification is established
Be skillful for extremes subject to a good overall
performance

» A new way to verify ensemble (only ?) forecasts for extremes is
shown

» This tool can be viewed as a summary of ROCs among
thresholds.
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Introduction Weighted CRPS EVT and CRPS distribution Case study
Conclusions

» Some properties of (w)CRPS are debated... And also used

» A different criterion for extreme verification is established
Be skillful for extremes subject to a good overall
performance

» A new way to verify ensemble (only ?) forecasts for extremes is
shown

» This tool can be viewed as a summary of ROCs among
thresholds.

» It seems to be consistent with simulations and real data
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