# Verification of extremes using proper scoring rules and extreme value theory

# Maxime Taillardat<sup>1,2,3</sup>

A-L. Fougères<sup>3</sup>, P. Naveau<sup>2</sup> and O. Mestre<sup>1</sup>

CNRM/Météo-France<sup>2</sup>LSCE<sup>3</sup>ICJ

May 8, 2017







## Plan

## 1 Extremes : difficult to forecast... and to verify

- 2 Weighted CRPS for extremes
- 3 Extreme Value Theory and CRPS distribution
- 4 A relevant case study



# Verification & extremes : a challenging issue

#### Verification habits

- Set of observed events and associated forecasts
- Standard verification methods applied on the set

#### But for extremes

- Small number of observed events
- Standard verification methods degenerate
- Models (even ensemble forecasts) are usually quite bad
- Misguided inferences/assessments : The forecaster's dilemma (see Sebastian's talk)



## Plan

## 1 Extremes : difficult to forecast... and to verify

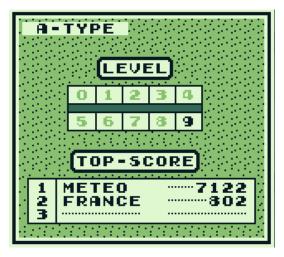
## 2 Weighted CRPS for extremes

- 3 Extreme Value Theory and CRPS distribution
- 4 A relevant case study



Introduction Weighted CRPS EVT and CRPS distribution Case study

## Proper scoring rules







## Proper scoring rules

- Y : observation with CDF G (unknown...)
- X forecast with CDF F
- s(.,.) function of  $\mathcal{F} \times \mathbb{R}$  in  $\mathbb{R}$

## s is a proper scoring rule (Murphy 1968; Gneiting 2007)

 $\mathbb{E}_{Y}(s(G, Y)) \leq \mathbb{E}_{Y}(s(F, Y))$ (1)





## Proper scoring rules

- Y : observation with CDF G (unknown...)
- X forecast with CDF F
- s(.,.) function of  $\mathcal{F} \times \mathbb{R}$  in  $\mathbb{R}$

# *s* is a proper scoring rule (Murphy 1968; Gneiting 2007)

$$\mathbb{E}_Y(\pmb{s}(\pmb{G},\pmb{Y})) \leq \mathbb{E}_Y(\pmb{s}(\pmb{F},\pmb{Y}))$$



(1)

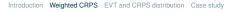


## The CRPS...

 A widely used proper score : the CRPS (Murphy 1969; Gneiting and Raftery 2007; Naveau et al. 2015; Taillardat et al. 2016)

$$CRPS(F, y) = \int_{-\infty}^{\infty} (F(x) - \mathbf{1}\{x \ge y\})^2 dx$$
  
=  $\mathbb{E}_F |X - y| - \frac{1}{2} \mathbb{E}_F |X - X'|$   
=  $y + 2 \left[\overline{F}(y) \mathbb{E}_F (X - y | X > y) - \mathbb{E}_F (XF(X))\right]$   
=  $\mathbb{E}_F |X - y| + \mathbb{E}_F (X) - 2\mathbb{E}_F (XF(X))$ 





## ... And its weighted derivation

A weighted score : the wCRPS (Gneiting and Ranjan 2012)

$$\begin{split} wCRPS(F, y) &= \int_{-\infty}^{\infty} w(x)(F(x) - \mathbf{1}\{x \ge y\})^2 \, \mathrm{d}x \\ &= \mathbb{E}_F |W(X) - W(y)| - \frac{1}{2} \mathbb{E}_F |W(X) - W(X')| \\ &= W(y) + 2 \left[ \overline{F}(y) \mathbb{E}_F(W(X) - W(y)|X > y) - \mathbb{E}_F(W(X)F(X)) \right] \\ &= \mathbb{E}_F |W(X) - W(y)| + \mathbb{E}_F(W(X)) - 2\mathbb{E}_F(W(X)F(X)) \end{split}$$
  
where  $W = \int w$  and  $\int wf < \infty$ 

The weight function cannot depend on the observation : it leads to improper scores.





# (Weighted) CRPS embarassing properties

$$w_q(x) = \log(x)\mathbf{1}\{x \ge q\}$$

This weight function is closely linked to the Hill's tail-index estimator.

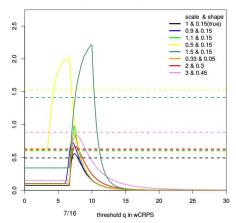




# (Weighted) CRPS embarassing properties

 $w_q(x) = \log(x) \mathbf{1}\{x \ge q\}$ 

This weight function appears suitable for extremes but...



wCRPS (plain) and CRPS(dotted) for GPDs



Maxime Taillardat



# (Weighted) CRPS embarassing properties II

Tail equivalence

$$\lim_{x\to\infty}\frac{\overline{F}(x)}{\overline{G}(x)}=c\in(0,\infty)$$

For any given e > 0, it is always possible to construct a CDF F that is not tail equivalent to G and such that

 $|\mathbb{E}_{Y}(wCRPS(G, Y)) - \mathbb{E}_{Y}(wCRPS(F, Y))| \le \epsilon$ 





# (Weighted) CRPS embarassing properties II

Tail equivalence

$$\lim_{x\to\infty}\frac{\overline{F}(x)}{\overline{G}(x)}=c\in(0,\infty)$$

For any given e > 0, it is always possible to construct a CDF F that is not tail equivalent to G and such that

 $|\mathbb{E}_{Y}(wCRPS(G, Y)) - \mathbb{E}_{Y}(wCRPS(F, Y))| \leq \epsilon$ 





Paradigm of verification for extremes?

*"The paradigm of maximizing the sharpness of the predictive distributions subject to calibration"* (Gneiting et al. 2006)

"Extreme events are often the result of some extreme atmospheric conditions and combinations : Most of the time just few members in the ensemble leads to such events. We could just look at the information brought by the forecast. But how ?"

- Consequence : we do not care about reliability here ! (More in "detection" logic)
- An example : The ROC Curve
- Different criterion : Be skillful for extremes subject to a good overall performance.
- Question : How combining an extreme verification tool with the CRPS ?



## Plan

- 1 Extremes : difficult to forecast... and to verify
- 2 Weighted CRPS for extremes
- 3 Extreme Value Theory and CRPS distribution
- 4 A relevant case study





# How using extreme value theory with CRPS?

The classical Continuous Ranked Probability Score (CRPS) can be written as :

 $CRPS(F, y) = \mathbb{E}|X - y| + \mathbb{E}(X) - 2\mathbb{E}(XF(X))$ 

And for large *y* it is possible to show that :

 $CRPS(F, y) \approx y - 2\mathbb{E}(XF(X))$ 

## Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw *Y* with CDF *G*, the survival distribution of CRPS(F, Y) can be approximated by a GPD with parameters  $\sigma_G$  and  $\xi_G$ :

 $\mathbb{P}(CRPS(F, Y) > t + u | CRPS(F, Y) > u) \sim GP_t(\sigma_G, \xi_G)$ 





# How using extreme value theory with CRPS?

The classical Continuous Ranked Probability Score (CRPS) can be written as :

 $CRPS(F, y) = \mathbb{E}|X - y| + \mathbb{E}(X) - 2\mathbb{E}(XF(X))$ 

And for large *y* it is possible to show that :

 $CRPS(F, y) \approx y - 2\mathbb{E}(XF(X))$ 

## Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw *Y* with CDF *G*, the survival distribution of CRPS(F, Y) can be approximated by a GPD with parameters  $\sigma_G$  and  $\xi_G$ :

$$\mathbb{P}(CRPS(F, Y) > t + u | Y > u) \sim GP_{t'}(\sigma_G, \xi_G)$$

Under assumptions on G (satisfied for extremes)





And so what?

# Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw *Y* with CDF *G*, the survival distribution of CRPS(F, Y) can be approximated by a GPD with parameters  $\sigma_G$  and  $\xi_G$ :

 $\mathbb{P}(CRPS(F, Y) > t + u | Y > u) \sim GP_{t'}(\sigma_G, \xi_G)$ 

Under assumptions on G (satisfied for extremes)

- Are we trapped ? Parameters are the same whatever the forecast
- Crucial (and unrealistic) assumption here : F and G are independent
- In practice, the convergence to these parameters is driven by the skill of ensembles for extreme events





And so what?

# Pickands-Balkema-De Haan Theorem (1974-1975)

If the observed value is viewed as a random draw *Y* with CDF *G*, the survival distribution of CRPS(F, Y) can be approximated by a GPD with parameters  $\sigma_G$  and  $\xi_G$ :

 $\mathbb{P}(CRPS(F, Y) > t + u | Y > u) \sim GP_{t'}(\sigma_G, \xi_G)$ 

Under assumptions on G (satisfied for extremes)

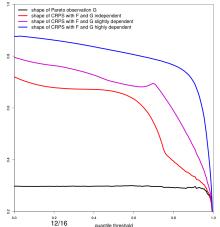
- Are we trapped ? Parameters are the same whatever the forecast
- Crucial (and unrealistic) assumption here : F and G are independent
- In practice, the convergence to these parameters is driven by the skill of ensembles for extreme events





## And so what?

- Crucial (and unrealistic) assumption here : F and G are independent
- In practice, the convergence to these parameters is driven by the skill of ensembles for extreme events



GPD shape parameter estimation



Maxime Taillardat

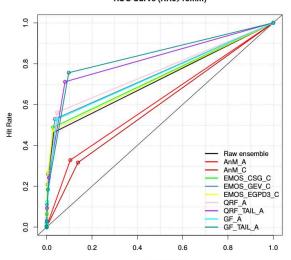
## Plan

- 1 Extremes : difficult to forecast... and to verify
- 2 Weighted CRPS for extremes
- 3 Extreme Value Theory and CRPS distribution
- 4 A relevant case study



Introduction Weighted CRPS EVT and CRPS distribution Case study

## Post-processing of 6-h rainfall for extremes



ROC Curve (RR6>15mm)

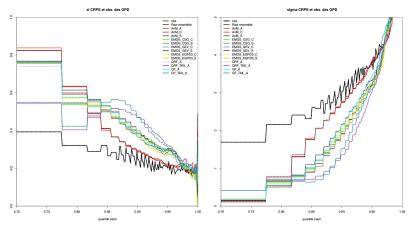
False Alarm Rate



Maxime Taillardat

Introduction Weighted CRPS EVT and CRPS distribution Case study

## Post-processing of 6-h rainfall for extremes



Estimations of GPD parameters are highly correlated



Some properties of (w)CRPS are debated... And also used

- A different criterion for extreme verification is established Be skillful for extremes subject to a good overall performance
- A new way to verify ensemble (only ?) forecasts for extremes is shown
- This tool can be viewed as a summary of ROCs among thresholds.
- It seems to be consistent with simulations and real data



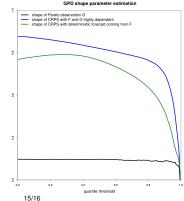


- Some properties of (w)CRPS are debated... And also used
- A different criterion for extreme verification is established Be skillful for extremes subject to a good overall performance
- A new way to verify ensemble (only ?) forecasts for extremes is shown
- This tool can be viewed as a summary of ROCs among thresholds.
- It seems to be consistent with simulations and real data





- Some properties of (w)CRPS are debated... And also used
- A different criterion for extreme verification is established Be skillful for extremes subject to a good overall performance
- A new way to verify ensemble (only?) forecasts for extremes is shown



FRANCE





- Some properties of (w)CRPS are debated... And also used
- A different criterion for extreme verification is established Be skillful for extremes subject to a good overall performance
- A new way to verify ensemble (only ?) forecasts for extremes is shown
- This tool can be viewed as a summary of ROCs among thresholds.
- It seems to be consistent with simulations and real data





- Some properties of (w)CRPS are debated... And also used
- A different criterion for extreme verification is established Be skillful for extremes subject to a good overall performance
- A new way to verify ensemble (only ?) forecasts for extremes is shown
- This tool can be viewed as a summary of ROCs among thresholds.
- It seems to be consistent with simulations and real data







- Jochen Bröcker. Resolution and discrimination–two sides of the same coin. *Quarterly Journal of the Royal Meteorological Society*, 141 (689) :1277–1282, 2015.
- Jochen Bröcker and Leonard A Smith. Scoring probabilistic forecasts : The importance of being proper. *Weather and Forecasting*, 22(2) :382–388, 2007.
- Laurens De Haan and Ana Ferreira. *Extreme value theory : an introduction*. Springer Science & Business Media, 2007.
- Petra Friederichs and Thordis L Thorarinsdottir. Forecast verification for extreme value distributions with an application to probabilistic peak wind prediction. *Environmetrics*, 23(7) :579–594, 2012.





- Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration and sharpness. *Journal of the Royal Statistical Society : Series B (Statistical Methodology)*, 69 (2) :243–268, 2007.
- Sebastian Lerch, Thordis L Thorarinsdottir, Francesco Ravazzolo, Tilmann Gneiting, et al. Forecaster's dilemma : extreme events and forecast evaluation. *Statistical Science*, 32(1) :106–127, 2017.
- David S Richardson. Skill and relative economic value of the ecmwf ensemble prediction system. *Quarterly Journal of the Royal Meteorological Society*, 126(563) :649–667, 2000.

