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What is high impact weather?
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High impact weather forecasts

Fire Weather Warning

for the Northern Country, Wimmera,
Mallee, North Central and Northeast
forecast districts.
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Challenges in modelling high impact weather

* Models may not capture the intensity of high impact events

— Sub grid scale processes
— Coarse resolution
— Difficulty representing processes

* May be a mismatch between what
models can provide and what warnings
need to be made for

— Lightning, hail, wind gusts, fog, ...

* Large uncertainty with extreme events
— Ensemble / probabilistic forecasts

— Extreme forecast index (EFI) and
anomaly forecasts (ANF)
measure relative "extremeness"




Verification for high impact weather

* How should we do it?
* What recent research can assist?

* What are some of the challenges requiring
further research?




Useful verification of HIW events

Guides users in making better decisions based on forecasts

* How reliable is the forecast at capturing events?
* What are typical errors in timing / location / intensity of events?
* Are the forecasts biased?

Informs modellers / forecast system developers on how to improve
forecasts

* Do the forecasts show the right behaviour?
* What is the nature of the errors?

Assists managers in monitoring forecast performance
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Service Assessment

Rainfall Amount

The Historic South Carolina Floods of October 1-5, 2015
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Modern perspective - systematic verification
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24 Hr QPF ending at 12 UTC on:

04/30/2017

WPC Forecast (24hr)

chjeciz are shaded/Observed chjects are contoured
Any tched objects are displayed in dark bive

Top Performers

(ranked by interest value)
Observed Displacement
Object Number Model InterestValue p; 4o hce (km)
WPC 0.993 29
1 GFS 0.990 54
UKMET  0.982 65

MODE verification performed
every day at NWS Weather
Prediction Center



Challenges in observing high impact weather

* Rare events

e Sampling error (timing, location,
magnitude)

* Measurement error (gauge undercatch,
radar attenuation, etc.)

* Non-reports

* May not match the forecast space & time
scales (representativeness "error")

El Reno, TX, weather station post-tornado
Photo: Cliff Mass weather blog
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Observation uncertainty in verification

* As models improve, we can no longer ignore
observation error!

* What are the effects of ignoring the observation
error?

— Forecasts may actually be better than they seem

— Should users of verification results be advised?

* What are the effects of including the observation error?
— “Noise” leads to poorer scores for deterministic forecasts

— Probabilistic/ensemble forecasts have poorer reliability & ROC

» 7IVMW session on observation uncertainty




How does observation uncertainty compare to
forecast uncertainty in verification?

e 6h forecasts of hourly precipitation, 11t June - 26th August 2015

o Observation (VPR) uncertainty - UKV vs radar ensemble (13 members)
e Forecast uncertainty - MOGREPS-UK ensemble (12 members) vs radar
e Fractions skill score for 51km neighbourhood

MOGREPS-UK ensemble against

UKV against radar ensemble unperturbed radar analysis
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Dealing with observation uncertainty

Strategies for reducing observation error
— Quality control on measurements, correction of systematic errors
— Averaging / analysis to larger space and time scales
— Multiple observation sources

Some approaches estimate the "true" verification scores, i.e., what would be
computed if there were no observation error

— Obs error distribution must be very well known and spatially uncorrelated

"Tolerant" verification approaches
— Distributions-based diagnostics including binning, quantiles, error bars
— Object-based methods
— Neighbourhood verification methods
— Probabilistic observations [] probabilistic scores



Simple verification approaches suit some users

* Easy to understand Observed events
* Can guide decision making yes o

Forecast yes 59 34 93

events no 22 674 696

Contingency table o o o

Observed events

Q1: Given that an event is forecast, what is the chance that

yes no the event will actually occur?
es hits false forecast 59/93 (x 100) = 63%
y alarms yes
F:‘::ﬁ?sst Q2: When events occur, how often is the forecast correct?

. correct | forecast

No | MISSES | hoatives "o 59/81 (x100) = 73%

total Q3: Do the forecasts predict events too often / not often
obseersved obs?gved number enough?

% of fcsts

(93-81) / 81 (x 100) = 15% (too frequent)
15




Simple verification approaches

Deterministic limit - how long does it take until the forecast is more
wrong than right?

misses+
hits false alarms

Deterministic limit

_ | (Hewson 2007)
0 B 12 18 24 30 36 42 48
Lead time (hours)

Can be used to set appropriate targets for warning provision

Provides guidance on when to switch from deterministic forecasts to
probabilistic ones

16



Verifying rare extreme values

Scoring categorical forecasts
— Metrics should reward hits, penalise misses and false alarms

— For rare events, traditional categorical scores like ETS[] 0
— Symmetric extremal dependency index:

SEDI =

10,90
0.85F

logF - logH - log(1- F) +log(1- H) 0.80

logF +logH +log(1- F) +log(1- H) __0.75
© 0.70
[Fa]
0.65
0.60

0.55H

— & ECMWF summer
s 12 km MetUM summer

0.5 ' '
OBD 85 agQ 95
Percentile

North, Met. Apps., 2013



Verifying probability forecasts

* Cannot verify an individual probability forecast
* Probabilistic verification requires a large sample of forecasts
* Difficult to explain to many people

* Continuous Ranked Probability Score (CRPS) emerging as score of choice
for model verification

Relative Operating Characteristic

Likelihood diagram Reliability diagram
- observed observed 1 skill ' 1
< non-events events S
(] >
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O ) g 9
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5 £ clm. m
o Pec
©.1.2.3.4.5.6 .7 .8.91.0 0 3 0
0 Forecast probability 1 0 False alarm rate 1

Forecast probability

simple » complex 18




=~ \Verification of extreme events

Met Office

Summer day-time max temperatures over UK, 2014-2015

How much better at predicting relative-extremes was the
forecast compared with the climatology?

Score > 0.5 means the forecast was better than
the climatology

Skill decreases with
increasing forecast range

< A P
E ‘

Forecast range (hours)

Even the forecast on day 9 is better than the climatology

© Crown copyright Met Office Courtesy Michael Sharpe, Met Office



Other modifications of CRPS

* Rare/extreme values are in the tails of the climatological
distribution

* Possible strategies

—  Weighted scoring rules
—  Extreme value theory
— Quantile verification

Forecast

> Talks this session by
Petra Friederichs, )
Maxime Taillardat, LN

A e
1 I
Sebastian Lerch, Hong Guan Observation

20



Observation 1

Observation 2

Observation 1

Observation 3

Observation N-1

Observation N

Two-alternative forced choice:

—
—

—

Forecast 1

Forecast 2

Forecast 1

Forecast 3

Forecast N-1

Forecast N

> Talks by Roger Harbord, Alexander Jordan

Generalized Discrimination Score (GDS)

Mason & Weigel, MWR, 2009

Obs correctly

discriminated? YES/NO

Obs correctly

discriminated? YES/NO

Obs correctly
discriminated? \

YES/NO |
Y

GDS = proportion of
successful rankings
(no skill = 50%)



Seamless verification to span scales

———— el
window lead
Iwlw
ddad
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i Weekl > Week2 > Weak3 >

Zhu et al. 2014
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Spatial verification
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Object-based vs. traditional verification

TRADITIONAL SCORES
POD 0.22
FAR 0.86
CSI 0.09
GILBERT (ETS) 0.08
BIAS 1.6

Observed

Traditional scores suggest the forecast was
very poor

MODE provides much more information
about performance than traditional scores

MODE defines and quantifies the flaws
and good qualities of the forecast:

— Many misses and false alarms (small
objects/areas)

— Significant storm area somewhat too large
and too intense, but placed well

— Less significant storm area (SE) too small and
not intense enough

24



Neighborhood verification credits "close" forecasts

Fractions skill score compares forecast and observed  Multi-event contingency table measures whether a forecast
fractional coverage (Roberts and Lean 2008) event is close to an observed event (Atger 2001)

observation forecast observation forecast

Fractions skill score — FSS

1.85
Large scalest.ss
?," 1.15

i}
E 0.85

Knowing which scales have
skill suggests the scales at
which the forecast should be

I good performance

a
1

075

¥ 045
? 028 0,48 0.8 0.09 I
Small scaleso.os 048 044 031 047 004 poor performance presented and trusted

o2 05 1 z a 1a 20 50
Thresheld (mm/h)

Light rain Heavy rain 25




Flexible verification of warnings

T .. !Lateissue; o . : i
Miss . miss Early hit | Hit ! Late hit i Miss
Event : 5 : | — — —
threshold ; i ! ! i
Low : Late issueé Early low : Low hit : Late low . Low
miss : low miss | hit [ i hit i Miss
Low event i : i i :

threShOld -I...'.‘..I...l.;.l'...l.qj.......ll...'....i....-l........l..

Non-event E False alarm
i
i
I
;

Non-event
Late Early ' Late
'ﬁﬁ;’: >« hit };q_ Warning period _.;;4_ hit _y
period period | ; period ~ Sharpe, Met Apps 2016
l l I T 1 >
Issue time Start time End time
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Spatial verification and ensembles

* Neighborhood verification is easily extended to ensembles

* Adapting existing scores for comparing probabilistic forecasts and
probabilistic observations

(x))*dx

obs

CRPS = J(Pfcst (x)- P

* SAL also applies well to ensembles

> Talks by Craig Schwartz, Marion Mittermaier, Helge Goessling, Sabine
Radanovics
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Weather forecasts | | impact forecasts

Floods

Air 8
travel o

o 4 Sports

Agriculture
Emergency

management
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GHM forecast layers and identifying high-impact

weather events

Met Office ECMWF ENS; MOGREPS-UK; Multi-Model

Day 3 forecast from 00Z 09/03/2016 Day 4 forecast from 00Z 19/01/2016 Day 4 forecast from 00Z 25/03/2016
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Global Hazard Map: evaluation of precipitation forecasts

et e How does GHM perform in meeting its

key aim “to summarise the risk of high-
Q impact weather for the week ahead”?

(1) Did the forecast weather at a certain (2) Did the forecast weather result in
level of severity occur? a high-impact event?

/ Traditional ensemble-based verification\ / Newly developed impact-based evaluation\
against weather observations method
Comparing gridded hazard forecasts Aims to evaluate how well the Global Hazard
against station-based weather observations Map summary polygons relate to records of
to create contingency based verification community impacts (e.g. fatalities, injuries,
statistics as to whether or not the weather displacement, evacuation, receipt of aid,

\\event occurred J Qisruption, denial of access, hardship)




GHM: (1) Verification against precipitation observations

Met Office

* Verification against global station-based
observations (3315 sites) from Feb-Dec 2015

* Forecast event: probability of 24-hour
precipitation exceeding the 99th percentile in
the forecast climatology

* Observed event: 24-hour precipitation
exceeding the 99th percentile in the observed
climatology at that site

* Calculated contingency based statistics
(reliability, ROC diagram, Brier skill score, etc.)
for each of the three model precipitation layers
(ECMWF ENS, MOGREPS-G and the multi-
model ensemble)

Area under ROC curve

0.90 Observed event defined by 99th centile in SEEPS climatology

— ECMWF ENS
— MOGREPS-G
0.85| ——  Multi-model |

o
@
=}

0.65F

0.60
1

2 3 4 5 6 7
Day number in forecast

Skill (area under ROC curve) greatest for multi-
model at all lead times

Good skill shown throughout forecast period




Socio-economic Impact Databases

Met Office

Heavy Rainfall Database

Spatial 1D (entry ID)

Event ID (hazard event ID)

Record Date

Start Date

End Date

Hazard Type (‘Heavy rainfail’)

Trigger/Cause

Secondary Hazards

Hazard Notes

Country Name

Region/State/Province Name

Region/State/Province Latitude

Region/State/Province Longitude

Seftlement Name

Settlement Latitude

Location of heavy rainfall impacts (February — December 2015)

&

Between February 8" and December 31512015 a total of 261 heavy rainfall events were

Settlement Longitude

Impact Information

Impact Categorisation

References

| #% Public Heaith England
Global hazards weekly bulletin
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Met Office

GHM: (2) Evaluation against rainfall impact observations

* Forecast heavy rainfall events compared to heavy rainfall impacts, Feb-

Dec 2015

* Forecast event: GHM summary polygon features from multi-model
ensemble representing the area where forecast probabilities exceed 0.4.

* Observed event: polygon features representing the location of observed
community impacts. Heavy rainfall impact database contains 853 entries,
split into impact severity categories (low, moderate, high and disastrous)

All

- - - Disaster

T High Impacts
Mod. Impacts

- - - Low Impacts

1.0
|

T To T Wer T T T T T 0§

o8¢

Proportion of hits
00 02 04 06 08

Lead Time

Measures intersects between impact
polygons and GHM forecast summary
polygons




Aim: Improve forecasts
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Courtesy Brian Golding 38



Weather information value chain

COMMUNICATION PROCESSES

PRODUCTION & Specialised
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HIWeather challenges for
user-oriented evaluation

Appropriate verification methods for temporal and spatial high impact weather
forecasts (high resolution ensembles, extremes, nowcasts, warnings, downstream
hazards, etc.)

Use social media and non-standard data to evaluate hazards, impact, response

Build users’ trust by informing about good and bad forecasts, and user-focused
verification approaches

Entrain social scientists to help understand the decisions made in response to high
impact weather and associated hazards

Evaluation of the weather information value chain

Quantify the socio-economic benefits of high impact weather forecasts, including
identifying avoided losses

40



Final remarks

* Enormous progress in recent years in improving methods for
verifying high impact weather
— Spatial / diagnostic verification approaches now mainstream
— New methods for verifying rare extreme events
— Simple approaches appropriate for communicating with some users
— Need more work on timing verification
* Observations of high impact weather remains a challenge
— Unconventional observations getting more uses
— Methods for dealing with observation uncertainty are in development

* WWRP High Impact Weather project is encouraging user-oriented
evaluation of impacts and whole value chain

41



Levels of user focus

Level 0: Conventional measures-based
approaches

— Best for administrative purposes

Level 1: Broad diagnostic approaches
— Evaluate variables of interest to users

— User-selectable information
(stratifications, thresholds)

— Often graphical

— Confidence intervals

Courtesy Barb Brown
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L evels of user focus

Level 2: Features-based and enhanced
diagnostic approaches applied

— Evaluation of multiple attributes of
broad interest to users

Level 3: User-specific approaches and
measures

— Interact closely with users to
determine meaningful approaches
and measures

— May include specialized datasets
that are user-specific

Courtesy Barb Brown

ACCESS—G foest 201502 Analysis 20150220

e < s

Level 4: Forecast value estimated,
making use of user-focused
verification information

- Close interaction with users

- Deep understanding of users’
decision-making and applications
of forecasts
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