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Decadal Prediction
Drift as a Particular Challenge for Verification

Henning Rust

Institut für Meteorologie,
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Decadal climate prediction . . .

. . . provides information about the future evolution of the
statistics of regional climate from the output of a numerical
model that has been initialized with observations . . .

1

1cited from Meehl et al. [2014]
,
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Decadal climate prediction . . .

2
2taken from Boer et al. [2016]

,
H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 3



Initialization with “observations”
Hindcast set: initialize every year, 10-yr hindcast each

courtesy of Jens Grieger

Full-field
assimilate directly

Anomaly
assimilate anomalies
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Hindcast set: initialize every year, 10-yr hindcast each

Full-field
assimilate directly

Anomaly
assimilate anomalies

Annual mean global temperature,
taken from Smith et al. [2013]
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Verification of decadal
prediction
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Drift adjustment

Re-Calibration
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A framework
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A framework

Q1: Predictions more accurate due to initialization?
Q2: Does ensemble spread appropriately represents

uncertainty?
,
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Verification: What can we expect?3

Temporal scales

annual/seasonal averages

1yr lead-year 1
4yrs lead-years 2-5, 6-9
8yrs lead-years 2-9

more are preferable

Spatial scales

scale of reference or larger,
e.g.

Temp 5◦×5◦

Precip 2.5◦×2.5◦

depends on study

3Decadal prediction verification framework Goddard et al. [2013]
,
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Verifying ensemble predictions: Accuracy of mean

Ensemble mean

Hjτ =
1

Ne

Ne
∑

i=1

Hijτ

Hijτ ens. member i, initialization j, lead-year τ

Q1: More accurate due to initialization?

MSESS = 1−
MSEH

MSER

historicals (no initialization but forcing) as reference

,
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Verifying ensemble predictions: Spread

Ensemble Spread

σ2
Hj

=
1

Ne − 1

Ne
∑

i=1

�

Hijτ − Hjτ
�2

Q2: Does ensemble spread appropriately represents
uncertainty?

,
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Verifying ensemble predictions: Spread

Ensemble Spread

σ2
Hj

=
1

Ne − 1

Ne
∑

i=1

�

Hijτ − Hjτ
�2

Q2: Does ensemble spread appropriately represents
uncertainty?

CRPS(N (Ĥj, σ2
H),Oj)

Gaussian hindcast distributiona

conditional and unconditional bias adjusted (Ĥj)

aGneiting and Raftery [2007]
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Verifying ensemble predictions: Spread

Ensemble Spread

σ2
Hj

=
1

Ne − 1

Ne
∑

i=1

�

Hijτ − Hjτ
�2

Q2: Does ensemble spread appropriately represents
uncertainty?

CRPSS = 1−
CRPSH

CRPSR

MSE as variance of ref. fore-
cast, CRPSS=0 is optimal!

,
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Verifying ensemble predictions: Spread

Ensemble Spread

σ2
Hj

=
1

Ne − 1

Ne
∑

i=1

�

Hijτ − Hjτ
�2

Q2: Does ensemble spread appropriately represents
uncertainty?

CRPSS = 1−
CRPSH

CRPSR

LESS = ln

 

σ2
H

MSE

!

MSE as variance of ref. fore-
cast, CRPSS=0 is optimal!

Additionally, logarithmic
ensemble spread score
e.g. Kadow et al. [2014]

,
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Small ensembles and significance

MiKlip ensembles

baseline0 3
baseline1 10
prototype 15 + 15
preop ≤ 15

Goddard et al. [2013] suggest a bootstrap for significance

,
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Small ensembles and biased scores

4

� bias corrected scores Ferro et al. [2008]
� application with RPS Kruschke et al. [2015]
� implemented in R-package SpecsVerification

(Stefan Siegert)
4taken from Müller et al. [2005]

,
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Drift



“Bias” or mean difference

ME =
1

N

N
∑

j=1

Hj −
1

N

N
∑

j=1

Oj

,
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“Bias” or mean difference

ME =
1

N

N
∑

j=1

Hj −
1

N

N
∑

j=1

Oj := b

For decadal prediction and other cases

b = b(τ,X) ,

τ: forecast lead-time; X and climate state X.

Sytematic error we belief we can compensate a posteriori

,
H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 13



Drift

change in bias with forecast lead-time τ

D(τ,X) =
∂

∂τ
b(τ,X)

,
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Drift

change in bias with forecast lead-time τ

D(τ,X) =
∂

∂τ
b(τ,X)

,
H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 14



Quantifying drift

‖D(τ,X)‖ =
Ç

(D(τ,X))2

=

√

√

√

�

∂

∂τ
b(τ,X)

�2

Igor Kröner Drift Quantification and Correction in Decadal Predictions of
Climate Extremes Indices, in preparation
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Examples from MiKlip: Drift in global mean
temperature
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1960−INITIAL ISATIONS−2000

HadCrut 4 (absolute)
Uninitialised runs/RCP4.5

full-field

anomaly

courtesy of Igor Kröner
,
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Examples from MiKlip: Drift in global mean
temperature

lead years

bi
as

(τ
)

D
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x x x x x x x x x x

x

+

+
+

+
+ + + + + +

+

decs4e
dffs4e

red anomaly initialisation (baseline1, decs4e)
brown full-field initialisation (prototype, dffs4e)

courtesy of Igor Kröner
,
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x
x x x x x x x x x

−
0.

2
0.

0
0.

2
bi

as
(τ

)

1 2 3 4 5 6 7 8 9 10

Drift Adjustment



Verification of forecasts with bias/drift

S(H(t, τ), o(t))

,
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Verification of forecasts with bias/drift

S(H(t, τ), o(t))

How good is the forecast once we have com-
pensated for systematic errors?

,
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Verification of forecasts with bias/drift

S(Ĥ(t, τ), o(t))

Ĥ(t, τ) = H(t, τ)− b̂(t, τ)
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Verification of forecasts with bias/drift

S(Ĥ(t, τ), o(t))

Ĥ(t, τ) = H(t, τ)− b̂(t, τ)

Recommendationa full-field and anomalies
assume b(τ,X(t)) = b(τ, t)

b̂ICPO(t, τ) =
1

#{ti\t}

∑

ti\t

(H(ti, τ)− o(ti)) ≈ME(τ)

yr of forecast to be verified left out (ICPO 2011)
lead-years τ are treated individually

aBoer et al. [2016]

,
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Back to the drift . . .

lead years
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Back to the drift . . .

lead years
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decs4e
dffs4e

Drift ist smooth in τ

b(τ,X(t)) = b(τ), smooth/parametric form in τ

b̂Gan(t, τ) = a0 + a1 τ + a2 τ
2 + a3 τ

3

third order polynomial in τ Gangstø et al. [2013]
(exponential Pattantyús-Ábrahám et al. [2016])
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Back to the drift . . .
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Back to the drift . . .

Drift might change with climate (t)5

5Kharin et al. [2012]Fučkar et al. [2014]
,
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Back to the drift . . .

Drift might change with climate (t)5

b̂(t, τ) = a0 + a1 τ + a2 τ
2 + a3 τ

3

5Kharin et al. [2012]Fučkar et al. [2014]
,
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Back to the drift . . .

Drift might change with climate (t)5

b̂(t, τ) = a0(t) + a1(t)τ + a2(t)τ
2 + a3(t)τ

3

5Kharin et al. [2012]Fučkar et al. [2014]
,
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Back to the drift . . .

Drift might change with climate (t)5

b̂Kru(t, τ) = (b0+b1 t)+(b2+b3 t)τ+(b4+b5 t)τ2+(b6+b7 t)τ3

Kruschke et al. [2015]

5Kharin et al. [2012]Fučkar et al. [2014]
,
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Drift . . .

b̂Kru(t, τ) = (b0+b1 t)+(b2+b3 t)τ+(b4+b5 t)τ2+(b6+b7 t)τ3

x

x
x

x x x x x x x

−
1.

0
0.

0
1.

0
bi

as
(τ

)

1 2 3 4 5 6 7 8 9 10

tas, full-field initialisation,
red (early init, 1960) to blue (late init, 2004)
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Drift . . .

b̂Kru(t, τ) = (b0+b1 t)+(b2+b3 t)τ+(b4+b5 t)τ2+(b6+b7 t)τ3
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tas, anomaly initialisation,
red (early init, 1960) to blue (late init, 2004)
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Drift . . .

b̂Kru(t, τ) = (b0+b1 t)+(b2+b3 t)τ+(b4+b5 t)τ2+(b6+b7 t)τ3

x
x x x x x x x x x

−
0.

2
0.

0
0.

2
bi

as
(τ

)

1 2 3 4 5 6 7 8 9 10

tas, anomaly initialisation,
red (early init, 1960) to blue (late init, 2004)

That seems complex! Does this help?

,
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Parametric drift adjustment vs ICPO

tas, full-field, MSESS, polynomial vs ICPO, yr2-5

,
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Re-calibration



Probabilistic forecast

all figures curtesy of Alexander Pasternack

,
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Probabilistic forecast

all figures curtesy of Alexander Pasternack
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Re-calibration method for decadal predictions

fi(t, τ) = μ(t, τ) + εi(t, τ)

6 μ(t, τ): ensemble mean, i = 1 . . .M member, t =init. year, τ = lead year

Re-calibrated ensemble

fCal
i

(t, τ) = μ(t, τ) + εi(t, τ)

6e.g. Weigel et al. [2008]
,
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Re-calibration method for decadal predictions

fi(t, τ) = μ(t, τ) + εi(t, τ)

6 μ(t, τ): ensemble mean, i = 1 . . .M member, t =init. year, τ = lead year

Re-calibrated ensemble

fCal
i

(t, τ) = α(t, τ) + μ(t, τ) + εi(t, τ)

1) α: bias and drift,

6e.g. Weigel et al. [2008]
,
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Re-calibration method for decadal predictions

fi(t, τ) = μ(t, τ) + εi(t, τ)

6 μ(t, τ): ensemble mean, i = 1 . . .M member, t =init. year, τ = lead year

Re-calibrated ensemble

fCal
i

(t, τ) = α(t, τ) + β(t, τ)μ(t, τ) + εi(t, τ)

1) α: bias and drift, 2) β: conditional bias,

6e.g. Weigel et al. [2008]
,
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Re-calibration method for decadal predictions

fi(t, τ) = μ(t, τ) + εi(t, τ)

6 μ(t, τ): ensemble mean, i = 1 . . .M member, t =init. year, τ = lead year

Re-calibrated ensemble

fCal
i

(t, τ) = α(t, τ) + β(t, τ)μ(t, τ) + γ(t, τ)εi(t, τ)

1) α: bias and drift, 2) β: conditional bias, 3) γ: spread

6e.g. Weigel et al. [2008]
,
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Re-calibration method for decadal predictions

fi(t, τ) = μ(t, τ) + εi(t, τ)

6 μ(t, τ): ensemble mean, i = 1 . . .M member, t =init. year, τ = lead year

Re-calibrated ensemble

fCal
i

(t, τ) = α(t, τ) + β(t, τ)μ(t, τ) + γ(t, τ)εi(t, τ)

1) α: bias and drift, 2) β: conditional bias, 3) γ: spread

find α(t, τ), β(t, τ), γ(t, τ) such that ensemble is calibrated
with maximum sharpness

6e.g. Weigel et al. [2008]
,
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A model for α, β, and γ
a first go a:

α(t, τ) = (a0 + a1t) + (a2 + a3t)τ + (a4 + a5t)τ2 + (a6 + a7t)τ3

Find parameters . . .

. . . by minimizing scores:
� CRPS Gneiting et al. [2005] details

� ignorance score

aPasternack et al. [2017]

,
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Re-calibration for MiKlip

tas, global mean, full-field
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Re-calibration for MiKlip – Verification
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Re-calibration for MiKlip – Verification

Re-calibrating the historical simulations (reference):
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Verifying grid-cells with CRPSS

mean surface temperature, lead-year 7-10, vs historical

ICPO
param. drift correction
plus cond. bias
plus ensemble spread

αICPO(t, τ)
α(t, τ)
β(t, τ)
γ(t, τ)
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Verifying grid-cells with CRPSS
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Summary

Verification of decadal predictions

� framework Goddard et al. [2013]
� ensemble mean accuracy: MSESS
� ensemble spread: CRPS based σ2

ens
vs MSE

� consider: LESS

� (multi-)annual averages

� score corrections for small ensembles

� drift issue

,
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Summary

x
x x x x x x x x x
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)
1 2 3 4 5 6 7 8 9 10

Drift adjustment

� b = b(τ,X(t))
� drift: full-field > anomaly initialisation
� parametric post-processing helps
� drift depending on climate not just on time Fučkar et al.

[2014]
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Summary

Re-calibration

� fCal
i

= α(t, τ) + β(t, τ)μ(t, τ) + γ(t, τ)εi(t, τ)

� parametrics form for α, β, γ
� minimize CRPS/IGN to estimate parameters
� improves calibration, does not reduce sharpness

(leave-10-yrs out cross validation)

,
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Open issues

� grid-cell wise ’climate trend’ estimation

� model selection

� parameter uncertainty

,
H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 35



References

G. J. Boer et al. The decadal climate prediction
project (DCPP) contribution to CMIP6. Geosci.
Model Dev., 9:3751–77, 2016.

C. A. T. Ferro et al. On the effect of ensemble size on
the discrete and continuous ranked probability
scores. Meteor. Appl., 15:19 – 24, 2008.
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