

Decadal Prediction Drift as a Particular Challenge for Verification

Henning Rust

7th Int. Verification Methods Workshop, Berlin, May 11th, 2017

... provides information about the future evolution of the statistics of regional climate from the output of a numerical model that has been initialized with observations ...

1

¹cited from Meehl et al. [2014]

H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 2

Decadal climate prediction ...

²taken from Boer et al. [2016]

Initialization with "observations"

Hindcast set: initialize every year, 10-yr hindcast each

courtesy of Jens Grieger

Initialization with "observations"

Hindcast set: initialize every year, 10-yr hindcast each

Annual mean global temperature, taken from Smith et al. [2013]

Initialization with "observations" Hindcast set: initialize every year, 10-yr hindcast each

Annual mean global temperature, taken from Smith et al. [2013]

Verification of decadal prediction

Drift

Drift adjustment

Re-Calibration

A framework

Clim Dyn (2013) 40:245-272 DOI 10.1007/s00382-012-1481-2

A verification framework for interannual-to-decadal predictions experiments

L. Goddard • A. Kumar • A. Solomon • D. Smith • G. Boer • P. Gonzalez • V. Kharin • W. Merryfield • C. Deser • S. J. Mason • B. P. Kirtman • R. Msadek • R. Sutton • E. Hawkins • T. Fricker • G. Hegerl • C. A. T. Ferro • D. B. Stephenson • G. A. Meehl • T. Stockdale • R. Burgman • A. M. Greene • Y. Kushnir • M. Newman • L. Carton • L. Fukumori • T. Delworth

Received: 10 October 2011/Accepted: 31 July 2012/Published online: 24 August 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

A framework

Clim Dyn (2013) 40:245-272 DOI 10.1007/s00382-012-1481-2

A verification framework for interannual-to-decadal predictions experiments

L. Goddard · A. Kumar · A. Solomon · D. Smith · G. Boer · P. Gonzalez · V. Kharin · W. Merryfield · C. Deser · S. J. Mason · B. P. Kirtman · R. Msadek · R. Sutton · E. Hawkins · T. Fricker · G. Hegerl · C. A. T. Ferro · D. B. Stephenson · G. A. Meehl · T. Stockdale · R. Burgman · A. M. Greene · Y. Kushnir · M. Newman · J. Carton · I. Fukumori · T. Delworth

Received: 10 October 2011/Accepted: 31 July 2012/Published online: 24 August 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Q1: Predictions more accurate due to initialization?

Q2: Does ensemble spread appropriately represents uncertainty?

Verification: What can we expect?³

Temporal scales

annual/seasonal averages **1yr** lead-year 1 **4yrs** lead-years 2-5, 6-9 **8yrs** lead-years 2-9 more are preferable

³Decadal prediction verification framework Goddard et al. [2013]

H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 7

Verification: What can we expect?³

Temporal scales	Spatial scales
annual/seasonal averages	scale of reference or larger,
1yr lead-year 1	e.g.
4yrs lead-years 2-5, 6-9	Temp 5°×5°
8yrs lead-years 2-9	Precip 2.5°×2.5°
more are preferable	depends on study

³Decadal prediction verification framework Goddard et al. [2013]

H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 7

Verifying ensemble predictions: Accuracy of mean

Ensemble mean

$$H_{j\tau} = rac{1}{N_e} \sum_{i=1}^{N_e} H_{ij\tau}$$

 $H_{ij\tau}$ ens. member *i*, initialization *j*, lead-year τ

Verifying ensemble predictions: Accuracy of mean

Ensemble mean

$$H_{j\tau} = rac{1}{N_e} \sum_{i=1}^{N_e} H_{ij\tau}$$

 $H_{ij\tau}$ ens. member *i*, initialization *j*, lead-year τ

Q1: More accurate due to initialization?

$$MSESS = 1 - \frac{MSE_H}{MSE_R}$$

historicals (no initialization but forcing) as reference

Ensemble Spread

$$\sigma_{H_j}^2 = \frac{1}{N_e - 1} \sum_{i=1}^{N_e} (H_{ij\tau} - H_{j\tau})^2$$

Ensemble Spread

$$\sigma_{H_j}^2 = \frac{1}{N_e - 1} \sum_{i=1}^{N_e} (H_{ij\tau} - H_{j\tau})^2$$

Q2: Does ensemble spread appropriately represents uncertainty?

$$CRPS(\mathcal{N}(\hat{H}_j, \overline{\sigma^2}_H), O_j)$$

Gaussian hindcast distribution^a conditional and unconditional bias adjusted (\hat{H}_i)

^aGneiting and Raftery [2007]

Ensemble Spread

$$\sigma_{H_j}^2 = \frac{1}{N_e - 1} \sum_{i=1}^{N_e} (H_{ij\tau} - H_{j\tau})^2$$

Q2: Does ensemble spread appropriately represents uncertainty?

$$CRPSS = 1 - \frac{\overline{CRPS_H}}{\overline{CRPS_R}}$$

MSE as variance of ref. forecast, CRPSS=0 is optimal!

Ensemble Spread

$$\sigma_{H_j}^2 = \frac{1}{N_e - 1} \sum_{i=1}^{N_e} (H_{ij\tau} - H_{j\tau})^2$$

Q2: Does ensemble spread appropriately represents uncertainty?

$$CRPSS = 1 - \frac{\overline{CRPS_H}}{\overline{CRPS_R}}$$

MSE as variance of ref. forecast, CRPSS=0 is optimal!

Ensemble Spread

$$\sigma_{H_j}^2 = \frac{1}{N_e - 1} \sum_{i=1}^{N_e} (H_{ij\tau} - H_{j\tau})^2$$

Q2: Does ensemble spread appropriately represents uncertainty?

$$CRPSS = 1 - \frac{\overline{CRPS_H}}{\overline{CRPS_R}}$$

MSE as variance of ref. forecast, CRPSS=0 is optimal!

$$LESS = \ln\left(\frac{\overline{\sigma^2}_H}{MSE}\right)$$

Additionally, logarithmic ensemble spread score e.g. Kadow et al. [2014]

Small ensembles and significance

MiKlip ensembles

baseline0 3
baseline1 10
prototype 15 + 15
preop ≤ 15

Goddard et al. [2013] suggest a bootstrap for significance

Small ensembles and significance

Goddard et al. [2013] suggest a bootstrap for significance

Small ensembles and significance

Goddard et al. [2013] suggest a bootstrap for significance

Small ensembles and biased scores

4

- bias corrected scores Ferro et al. [2008]
- application with RPS Kruschke et al. [2015]
- implemented in R-package SpecsVerification (Stefan Siegert)

⁴taken from Müller et al. [2005]

Drift

"Bias" or mean difference

$$ME = \frac{1}{N}\sum_{j=1}^{N}H_j - \frac{1}{N}\sum_{j=1}^{N}O_j$$

"Bias" or mean difference

$$ME = rac{1}{N} \sum_{j=1}^{N} H_j - rac{1}{N} \sum_{j=1}^{N} O_j := b$$

For decadal prediction and other cases

$$b = b(\tau, \mathbf{X})$$
,

 τ : forecast lead-time; **X** and climate state **X**.

Sytematic error we belief we can compensate a posteriori

H. Rust, FU Berlin, Drift in Decadal Prediction, 7th Int. Verification Methods Workshop, Berlin, May 11th, 2017 13

Drift

change in bias with forecast lead-time au

$$D(au, \mathbf{X}) = rac{\partial}{\partial au} b(au, \mathbf{X})$$

Drift

change in bias with forecast lead-time au

$$D(au, \mathbf{X}) = rac{\partial}{\partial au} b(au, \mathbf{X})$$

Quantifying drift

$$\|D(\tau, \mathbf{X})\| = \sqrt{(D(\tau, \mathbf{X}))^2}$$

= $\sqrt{\left(rac{\partial}{\partial au} b(\tau, \mathbf{X})
ight)^2}$

Igor Kröner Drift Quantification and Correction in Decadal Predictions of Climate Extremes Indices, in preparation

Examples from MiKlip: Drift in global mean temperature

courtesy of Igor Kröner

Examples from MiKlip: Drift in global mean temperature

red anomaly initialisation (baseline1, decs4e) **brown** full-field initialisation (prototype, dffs4e) courtesy of Igor Kröner

Drift Adjustment

 $S(H(t,\tau),o(t))$

 $S(H(t,\tau),o(t))$

How good is the forecast once we have compensated for systematic errors?

 $S(\hat{H}(t, \tau), o(t))$

$$\hat{H}(t,\tau) = H(t,\tau) - \hat{b}(t,\tau)$$

 $S(\hat{H}(t,\tau),o(t))$ $\hat{H}(t,\tau) = H(t,\tau) - \hat{b}(t,\tau)$

Recommendation^a full-field and anomalies

assume $b(\tau, \mathbf{X}(t)) = b(\tau, t)$

$$\hat{b}_{ICPO}(t,\tau) = \frac{1}{\#\{t_i \setminus t\}} \sum_{t_i \setminus t} (H(t_i,\tau) - o(t_i)) \approx ME(\tau)$$

yr of forecast to be verified left out (ICPO 2011) lead-years τ are treated individually

^aBoer et al. [2016]

Back to the drift ...

Drift ist smooth in au

 $b(au, \mathbf{X}(t)) = b(au)$, smooth/parametric form in au

$$\hat{b}_{Gan}(t, au) = a_0 + a_1 \, au + a_2 \, au^2 + a_3 \, au^3$$

third order polynomial in τ Gangstø et al. [2013] (exponential Pattantyús-Ábrahám et al. [2016])

(a) Schematic of drifts in decadal predictions

Drift might change with climate $(t)^5$

⁵Kharin et al. [2012]Fučkar et al. [2014]

Drift might change with climate $(t)^5$

$$\hat{b}(t, \tau) = a_0 + a_1 \, \tau + a_2 \, \tau^2 + a_3 \, \tau^3$$

⁵Kharin et al. [2012]Fučkar et al. [2014]

Drift might change with climate $(t)^5$

$$\hat{b}(t, \tau) = a_0(t) + a_1(t) \tau + a_2(t) \tau^2 + a_3(t) \tau^3$$

⁵Kharin et al. [2012]Fučkar et al. [2014]

Drift might change with climate $(t)^5$

$$\hat{b}_{Kru}(t, \tau) = (b_0 + b_1 t) + (b_2 + b_3 t) \tau + (b_4 + b_5 t) \tau^2 + (b_6 + b_7 t) \tau^3$$

Kruschke et al. [2015]

⁵Kharin et al. [2012]Fučkar et al. [2014]

Drift . . .

$$\hat{b}_{\mathit{Kru}}(t, au) = (b_0 + b_1 t) + (b_2 + b_3 t) au + (b_4 + b_5 t) au^2 + (b_6 + b_7 t) au^3$$

tas, full-field initialisation, red (early init, 1960) to blue (late init, 2004) Drift . . .

$\hat{b}_{Kru}(t, \tau) = (b_0 + b_1 t) + (b_2 + b_3 t) \tau + (b_4 + b_5 t) \tau^2 + (b_6 + b_7 t) \tau^3$

tas, anomaly initialisation, red (early init, 1960) to blue (late init, 2004) Drift . . .

$\hat{b}_{Kru}(t, \tau) = (b_0 + b_1 t) + (b_2 + b_3 t) \tau + (b_4 + b_5 t) \tau^2 + (b_6 + b_7 t) \tau^3$

tas, anomaly initialisation, red (early init, 1960) to blue (late init, 2004)

That seems complex! Does this help?

Parametric drift adjustment vs ICPO

tas, full-field, MSESS, polynomial vs ICPO, yr2-5

Re-calibration

Probabilistic forecast

all figures curtesy of Alexander Pasternack

Probabilistic forecast

all figures curtesy of Alexander Pasternack

$$f_i(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶ $\mu(t, \tau)$: ensemble mean, $i = 1 \dots M$ member, t =init. year, $\tau =$ lead year

⁶e.g. Weigel et al. [2008]

$$f_i(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶ $\mu(t, \tau)$: ensemble mean, $i = 1 \dots M$ member, t =init. year, $\tau =$ lead year

Re-calibrated ensemble

$$f_i^{Cal}(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶e.g. Weigel et al. [2008]

$$f_i(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶ $\mu(t, \tau)$: ensemble mean, i = 1...M member, t = init. year, $\tau = lead$ year

Re-calibrated ensemble

$$f_i^{Cal}(t, \tau) = \alpha(t, \tau) + \mu(t, \tau) + \epsilon_i(t, \tau)$$

1) α: bias and drift,

⁶e.g. Weigel et al. [2008]

$$f_i(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶ $\mu(t, \tau)$: ensemble mean, i = 1...M member, t = init. year, $\tau = lead$ year

Re-calibrated ensemble

$$f_{i}^{Cal}(t, \tau) = \alpha(t, \tau) + \beta(t, \tau)\mu(t, \tau) + \epsilon_{i}(t, \tau)$$

1) α : bias and drift, 2) β : conditional bias,

⁶e.g. Weigel et al. [2008]

$$f_i(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶ $\mu(t, \tau)$: ensemble mean, i = 1...M member, t = init. year, $\tau = lead$ year

Re-calibrated ensemble

 $f_i^{Cal}(t,\tau) = \alpha(t,\tau) + \beta(t,\tau)\mu(t,\tau) + \gamma(t,\tau)\epsilon_i(t,\tau)$

1) α : bias and drift, 2) β : conditional bias, 3) γ : spread

⁶e.g. Weigel et al. [2008]

$$f_i(t, \tau) = \mu(t, \tau) + \epsilon_i(t, \tau)$$

⁶ $\mu(t, \tau)$: ensemble mean, i = 1...M member, t = init. year, $\tau = lead$ year

Re-calibrated ensemble

 $f_i^{Cal}(t,\tau) = \alpha(t,\tau) + \beta(t,\tau)\mu(t,\tau) + \gamma(t,\tau)\epsilon_i(t,\tau)$

1) α : bias and drift, 2) β : conditional bias, 3) γ : spread

find $\alpha(t, \tau)$, $\beta(t, \tau)$, $\gamma(t, \tau)$ such that ensemble is calibrated with maximum sharpness

⁶e.g. Weigel et al. [2008]

 $\alpha(t,\tau) = (a_0 + a_1t) + (a_2 + a_3t)\tau + (a_4 + a_5t)\tau^2 + (a_6 + a_7t)\tau^3$

^aPasternack et al. [2017]

$$\begin{aligned} \alpha(t,\tau) &= (a_0 + a_1 t) + (a_2 + a_3 t)\tau + (a_4 + a_5 t)\tau^2 + (a_6 + a_7 t)\tau^3 \\ \beta(t,\tau) &= (b_0 + b_1 t) + (b_2 + b_3 t)\tau + (b_4 + b_5 t)\tau^2 + (b_6 + b_7 t)\tau^3 \\ \gamma(t,\tau) &= (c_0 + c_1 t) + (c_2 + c_3 t)\tau + (c_4 + c_5 t)\tau^2 + (c_6 + c_7 t)\tau^3 \end{aligned}$$

^aPasternack et al. [2017]

$$\begin{aligned} &\alpha(t,\tau) = (a_0 + a_1 t) + (a_2 + a_3 t)\tau + (a_4 + a_5 t)\tau^2 + (a_6 + a_7 t)\tau^3 \\ &\beta(t,\tau) = (b_0 + b_1 t) + (b_2 + b_3 t)\tau + (b_4 + b_5 t)\tau^2 + (b_6 + b_7 t)\tau^3 \\ &\gamma(t,\tau) = (c_0 + c_1 t) + (c_2 + c_3 t)\tau + (c_4 + c_5 t)\tau^2 + (c_6 + c_7 t)\tau^3 \end{aligned}$$

Find parameters ...

- ... by minimizing scores:
 - CRPS Gneiting et al. [2005]
 - ignorance score

^aPasternack et al. [2017]

$$\begin{aligned} &\alpha(t,\tau) = (a_0 + a_1 t) + (a_2 + a_3 t)\tau + (a_4 + a_5 t)\tau^2 + (a_6 + a_7 t)\tau^3 \\ &\beta(t,\tau) = (b_0 + b_1 t) + (b_2 + b_3 t)\tau + (b_4 + b_5 t)\tau^2 + (b_6 + b_7 t)\tau^3 \\ &\gamma(t,\tau) = (c_0 + c_1 t) + (c_2 + c_3 t)\tau + (c_4 + c_5 t)\tau^2 + (c_6 + c_7 t)\tau^3 \end{aligned}$$

Find parameters ...

- ... by minimizing scores:
 - CRPS Gneiting et al. [2005]
 - ignorance score

^aPasternack et al. [2017]

Re-calibration for MiKlip

tas, global mean, full-field

Re-calibration for MiKlip

tas, global mean, full-field

Re-calibration for MiKlip – Verification

Re-calibration for MiKlip – Verification

Re-calibrating the historical simulations (reference):

Re-calibration for MiKlip – Verification

Re-calibrating the historical simulations (reference):

CRPSS (ref. Obs.)

mean surface temperature, lead-year 7-10, vs historical

ICPO param. drift correction plus cond. bias plus ensemble spread $\gamma(t, \tau)$

 $\alpha_{\rm ICPO}(t,\tau)$ $\alpha(t,\tau)$ $\beta(t, \tau)$

mean surface temperature, lead-year 7-10, vs historical

ICPO param. drift correction plus cond. bias plus ensemble spread $\gamma(t, \tau)$

 $\alpha_{\rm ICPO}(t,\tau)$ $\alpha(t,\tau)$ $\beta(t, \tau)$

mean surface temperature, lead-year 7-10, vs historical

PlotEngine 1.1.18 / 2017-02-02 19:19:33 (b324067(jmik1p1)

ICPO comparam. drift correction complus cond. bias for plus ensemble spread for plus ensemble sp

$$\alpha_{\rm ICPO}(t,\tau)$$
$$\alpha(t,\tau)$$
$$\beta(t,\tau)$$
$$\gamma(t,\tau)$$

mean surface temperature, lead-year 7-10, vs historical

PlotEngine 1.1.18 / 2017-02-01 23:05:25 (b324067@miktp4)

ICPO o param. drift correction o plus cond. bias β plus ensemble spread γ

$$\begin{array}{c} \alpha_{\rm ICPO}(t,\tau) \\ \alpha(t,\tau) \\ \beta(t,\tau) \\ \gamma(t,\tau) \end{array}$$

Summary

Verification of decadal predictions

- framework Goddard et al. [2013]
 - ensemble mean accuracy: MSESS
 - ensemble spread: CRPS based σ_{ens}^2 vs MSE
 - consider: LESS
- (multi-)annual averages
- score corrections for small ensembles
- drift issue

Summary

Drift adjustment

- $b = b(\tau, \mathbf{X}(t))$
- drift: full-field > anomaly initialisation
- parametric post-processing helps
- drift depending on climate not just on time Fučkar et al.
 [2014]

Summary

Re-calibration

- $f_i^{Cal} = \alpha(t, \tau) + \beta(t, \tau)\mu(t, \tau) + \gamma(t, \tau)\epsilon_i(t, \tau)$
- parametrics form for α , β , γ
- minimize CRPS/IGN to estimate parameters
- improves calibration, does not reduce sharpness (leave-10-yrs out cross validation)

- grid-cell wise 'climate trend' estimation
- model selection
- parameter uncertainty
References

- G. J. Boer et al. The decadal climate prediction project (DCPP) contribution to CMIP6. *Geosci. Model Dev.*, 9:3751–77, 2016.
- C. A. T. Ferro et al. On the effect of ensemble size on the discrete and continuous ranked probability scores. *Meteor. Appl.*, 15:19 – 24, 2008.
- N. S. Fučkar et al. A posteriori adjustment of near-term climate predictions: Accounting for the drift dependence on the initial conditions. *Geophys. Res. Lett.*, 41(14):5200–5207, 2014.
- R. Gangstø et al. Methodological aspects of the validation of decadal predictions. *Clim. Res.*, 55: 181–200, 2013.
- T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc., 102(477):359–378, 2007.
- T. Gneiting et al. Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. *Month. Weather Rev.*, 133:1098–1118, 2005.
- L. Goddard et al. A verification framework for interannual-to-decadal predictions experiments. *Climate Dynamics*, 40:245–272, 2013.
- C. Kadow et al. Evaluation of forecasts by accuracy and spread in the miklip decadal climate prediction system. *Met. Z.*, 01 2014.
- V. V. Kharin et al. Statistical adjustment of decadal predictions in a changing climate. *Geophys. Res. Lett.*, 39:L19705, 2012.

- T. Kruschke et al. Probabilistic evaluation of decadal predictions for northern hemisphere winter storms. *Meteorol. Z.*, 2015.
- G. A. Meehl et al. Decadal climate prediction: An update from the trenches. *Bull. Amer. Meteorol. Soc.*, 95(2):243–267, 2014.
- W. A. Müller et al. A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J. Clim., 18(10): 1513–1523, 2005.
- A. Pasternack et al. Decadal forecast calibration a parametric strategy accounting for drift, conditional bias and ensemble spread. *in preparation*, 2017.
- M. Pattantyús-Ábrahám et al. Bias and drift of the medium-range decadal climate prediction system (MiKlip) validated by european radiosonde data. *Meteorologische Zeitschrift*, pages 709–720, 2016.
- D. M. Smith, R. Eade, and H. Pohlmann. A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. *Climate Dynamics*, 41(11):3325–3338, 2013.
- A. P. Weigel, M. A. Liniger, and C. Appenzeller. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? *Quart. J. Royal Meteor. Soc.*, 134(630): 241–260, 2008.